
DT Vision Foundry

UM-17757-C

API Manual
(for Windows)

Third Edition
September, 2002

Data Translation, Inc.
100 Locke Drive
Marlboro, MA 01752-1192
(508) 481-3700
www.datatranslation.com
Fax: (508) 481-8620
E-mail: info@datx.com

Copyright © 2000, 2001, 2002 by Data
Translation, Inc.

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form by any means,
electronic, mechanical, by photocopying,
recording, or otherwise, without the prior
written permission of Data Translation, Inc.

Information furnished by Data Translation, Inc.
is believed to be accurate and reliable; however,
no responsibility is assumed by Data Translation,
Inc. for its use; nor for any infringements of
patents or other rights of third parties which
may result from its use. No license is granted by
implication or otherwise under any patent rights
of Data Translation, Inc.

Use, duplication, or disclosure by the United
States Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer software clause at
48 C.F.R, 252.227-7013, or in subparagraph (c)(2)
of the Commercial computer Software -
Registered Rights clause at 48 C.F.R., 52-227-19 as
applicable. Data Translation, Inc., 100 Locke
Drive, Marlboro, MA 01752

Data Translation is a registered trademark and
DT Vision Foundry is a trademark of Data
Translation, Inc.

All other brand and product names are
trademarks or registered trademarks of their
respective companies.

Table of Contents

About this Manual . xi

Intended Audience. xi

What You Should Learn from this Manual. xi

Conventions Used in this Manual . xiii

Related Information . xiv

Where to Get Help . xiv

Chapter 1: Introducing the DT Vision Foundry API 1

What is the DT Vision Foundry API? . 2

What the API Is . 2

What the API Is Not . 4

Installation. 5

Service and Support . 6

Telephone Technical Support. 6

E-Mail and Fax Support . 9

World-Wide Web . 9

Chapter 2: Using the DT Vision Foundry API 11

Overview of the DT Vision Foundry API 12

The DT Vision Foundry Base Class Object 14

Name Methods . 15

Type Method . 16

Image Object . 17

Constructor and Destructor Methods 26

Overlay Methods. 27

Thresholding Methods . 36

Image Allocation Methods. 46

Image Display Methods . 49
iii

Contents

iv
EZ Image Data Access Methods . 56

Fast Image Data Access Methods . 60

Output Look-Up Table Methods. 66

Instance Methods . 75

Point Conversion Methods . 77

List Method . 81

Calibration Methods . 82

24-Bit RGB Specialized Methods. 84

24-Bit HSL Specialized Methods. 89

Child Image Method. 96

ROI Objects . 98

Constructor and Destructor Methods 102

Type Method . 104

Selection Methods . 105

Position Methods. 108

Mouse Methods . 112

ROI Creation . 113

ROI Selection and Deletion . 114

ROI Moving and Copying . 114

ROI Display Method. 125

ROI Image Access Methods. 128

Save and Restore Methods. 132

Graphic ROI Methods. 133

Curve Objects . 137

Constructor and Destructor Methods 140

Style Methods . 141

Data Access Methods . 144

Graph Objects . 147

Constructor and Destructor Methods 150

Curve List Method . 151

Contents
Save and Restore Methods. 152

Text Methods . 153

Show/Print Method . 155

Axis Methods . 158

Mouse Methods . 161

Direct Point Access Methods. 167

Grid Marking Methods . 169

Dialog Box Methods . 172

List Objects . 175

Constructor and Destructor Methods 180

Retrieve Methods . 181

Insert Methods. 184

Delete Methods . 187

General Methods . 191

Calibration Objects . 196

Constructor and Destructor Methods 197

Calibration Method. 198

Conversion Methods. 199

Save and Restore Methods. 202

General Methods . 203

Device Manager Objects . 206

Constructor and Destructor Methods 208

Initialize and Uninitialze Methods . 208

Information Methods . 210

Save and Load Methods. 218

Chapter 3: Using the Arithmetic Tool API 221

Overview of the Arithmetic Tool API . 222

CcArithmetic Methods . 225
v

Contents

vi
Chapter 4: Using the AVI Player Tool API 265

Overview of the AVI Player Tool API . 266

CcAVI Member Methods. 268

Chapter 5: Using the Barcode Tool API. 285

Description of CcBarCode Methods . 287

Example Program Using the Barcode API 304

Chapter 6: Using the Blob Analysis Tool API 307

Overview of the Blob Analysis Tool API 308

CcBlobFinder Methods . 312

CcBlob Methods . 327

Example Program Using the Blob Analysis Tool API 344

Chapter 7: Using the Contour Classifier Tool API 347

Introduction. 348

CcContour Methods. 352

Chapter 8: Using the Custom Script Tool API. 387

Introduction. 388

Anatomy of a Typical Custom Script Program. 389

Data Types . 390

Operators . 392

Math Operators . 393

Logical Operators . 395

String Operators . 397

Programming Considerations . 400

Expressions . 400

Branching . 403

Looping . 404

Contents
Date and Time . 406

Trigonometric Functions . 406

Restrictions . 407

Keywords and Functions . 408

Chapter 9: Using the Data Matrix Reader Tool API. 435

Overview of the Data Matrix Reader Tool API 436

CcDMCode Methods . 439

CcDMReader Methods . 458

Example Program Using the Data Matrix Reader Tool API. . . 460

Chapter 10: Using the Digital I/O Tool API 463

Overview of the Digital I/O Tool API. 464

Description of CcDigIODevice Methods 466

Chapter 11: Using the Edge Finder Tool API 501

Overview of the Edge Finder Tool API . 502

CcEdgeFinder Methods. 504

Chapter 12: Using the File Manager Tool API 515

Overview of the File Manager Tool API 516

CcFileConv Methods . 517

Example Program Using the File Manager Tool API 522

Chapter 13: Using the Filter Tool API 525

Overview of the Filter Tool API . 526

CcConvolution Methods . 527

Example Program Using the Filter Tool API 536

Chapter 14: Using the Gauge Tool API 539

Overview of the Gauge Tool API . 540

CcRoiGauge Methods . 544
vii

Contents

viii
Chapter 15: Using the Histogram Tool API 609

Overview of the Histogram Tool API . 610

CcHistogram Methods. 611

Example Program Using the Histogram Tool API 615

Chapter 16: Using the Image Classifier Tool API 619

Overview of the Image Classifier Tool API 620

CcImgCL Methods . 623

Chapter 17: Using the Image Modifier Tool API 651

Overview of the Image Modifier Tool API 652

CcImgMod Methods . 653

Chapter 18: Using the Line Profile Tool API 661

Overview of the Line Profile Tool API . 662

CcLineProfile Methods . 664

Example Program Using the Line Profile Tool API. 678

Chapter 19: Using the Morphology Tool API. 681

Overview of the Morphology Tool API 682

CcMorphology Methods . 684

Example Program Using the Morphology Tool API 697

Chapter 20: Using the Picture Tool API 699

Overview of the Picture Tool API . 700

CcPictureTool Methods . 704

Chapter 21: Using the Pixel Change Tool API. 795

Overview of the Pixel Change Tool API 796

CcChange Methods . 797

Example Program Using the Pixel Change Tool API 805

Contents
Chapter 22: Using the Polar Unwrap Tool API 807

Overview of the Polar Unwrap Tool API 808

CcUnwrapper Methods . 809

Example Program Using the Polar UnwrapTool API 828

Chapter 23: Using the ROI Shape Fitter Tool API 831

Overview of the ROI Shape Fitter Tool API 832

CcShapeFitter Methods . 834

Chapter 24: Using the Search Tool API 843

Overview of the Search Tool API . 844

SearchTypeEnum Enumeration . 845

MatchRecord Type . 845

Class Method Summary. 846

CcSearch Methods . 848

Chapter 25: Using the Serial I/O Tool API 879

Overview of the Serial I/O Tool API. 880

CcSerialIO Methods . 882

Example Program Using the Serial I/O Tool API 900

Chapter 26: Using the Sound Tool API 901

Overview of the Sound Tool API . 902

Example Program Using the Sound Tool API 908

Chapter 27: Using the Text Tool API 909

Overview of the Text Tool API . 910

CcTextRoiRect Methods. 911

Chapter 28: Using the Threshold Tool API 925

Overview of the Threshold Tool API. 926

CcThreshold Methods . 927

Example Program Using the Threshold Tool API 935
ix

Contents

x

Chapter 29: Creating DT Vision Foundry Tools 937

Introduction. 938

What is a Tool?. 938

How a Tool Communicates with the Main Application . . 938

Guidelines for Creating a Tool . 939

DT Vision Foundry Messages. 940

Request Messages . 941

Notification Messages. 963

Command Messages. 1006

Point and Click Script Messages . 1053

Example Tool Implementation . 1071

Creating a Base Tool . 1071

Registering a Tool with DT Vision Foundry 1073

Customizing the Look of Your Tool 1075

Editing the String Table in the RC File 1075

Editing the Bitmaps and Icon in the RC File 1076

Editing the Dialog Box in the RC File 1076

Adding Functionality Using Command and Request
Messages. 1077

Adding Functionality Using Notification Messages 1081

Separating the Tool into Modules . 1084

Speeding Up the Execution of a Tool. 1086

Deriving Algorithms with DT Vision Foundry 1086

Executing Algorithms with DT Vision Foundry 1087

Appendix A: Vendor-Specific Properties and Values . . 1091

Index . 1119

About this Manual
This manual describes the API for the main application of DT Vision
Foundry as well as the tools that are provided for it.

Intended Audience

This manual is intended for application programmers who want to
add custom tools to DT Vision Foundry or to create a machine vision
application using DT Vision Foundry. You should be familiar with
Windows programming using the Windows 2000 or Windows XP
operating system, Visual C++, and the Microsoft Foundation
Classes (MFC). In addition, if you intend to modify the Picture tool or
DTiX server code, you should be familiar with COM programming.

What You Should Learn from this Manual

The main DT Vision Foundry application and all its tools provide an
object-oriented set of APIs. These APIs are included with the
application and each tool. This manual describes how to create your
own custom tools and machine vision application using the API for
DT Vision Foundry and its tools.

The manual is organized as follows:

• Chapter 1, “Introducing the DT Vision Foundry API,” provides
an overview of the API for DT Vision Foundry main application,
and provides installation and technical support information.

• Chapter 2, “Using the DT Vision Foundry API,” describes the
API for the DT Vision Foundry main application.

• Chapter 3, “Using the Arithmetic Tool API,” describes the API
for the Arithmetic tool.
xi

About this Manual

xii
• Chapter 4, “Using the AVI Player Tool API,” describes the API
for the AVI Player tool.

• Chapter 5, “Using the Barcode Tool API,” describes the API for
the Barcode tool.

• Chapter 6, “Using the Blob Analysis Tool API,” describes the API
for the Blob Analysis tool.

• Chapter 7, “Using the Contour Classifier Tool API,” describes the
API for the Contour Classifier tool.

• Chapter 8, “Using the Custom Script Tool API,” describes the
API for the Custom Script tool.

• Chapter 9, “Using the Data Matrix Reader Tool API,” describes
the API for the Digital I/O tool.

• Chapter 10, “Using the Digital I/O Tool API,” describes the API
for the Digital I/O tool.

• Chapter 11, “Using the Edge Finder Tool API,” describes the API
for the Edge Finder tool.

• Chapter 12, “Using the File Manager Tool API,” describes the
API for the File Manager tool.

• Chapter 13, “Using the Filter Tool API,” describes the API for the
Filter tool.

• Chapter 14, “Using the Gauge Tool API,” describes the API for
the Gauge tool.

• Chapter 15, “Using the Histogram Tool API,” describes the API
for the Histogram tool.

• Chapter 16, “Using the Image Classifier Tool API,” describes the
API for the Image Classifier tool.

• Chapter 17, “Using the Image Modifier Tool API,” describes the
API for the Image Modifier tool.

• Chapter 18, “Using the Line Profile Tool API,” describes the API
for the Line Profile tool.

About this Manual
• Chapter 19, “Using the Morphology Tool API,” describes the API
for the Morphology tool.

• Chapter 20, “Using the Picture Tool API,” describes the API for
the Picture tool.

• Chapter 21, “Using the Pixel Change Tool API,” describes the
API for the Pixel Change tool.

• Chapter 22, “Using the Polar Unwrap Tool API,” describes the
API for the Polar Unwrap tool.

• Chapter 23, “Using the ROI Shape Fitter Tool API,” describes the
API for the ROI Shape Fitter tool.

• Chapter 24, “Using the Search Tool API,” describes the API for
the Search tool.

• Chapter 25, “Using the Serial I/O Tool API,” describes the API
for the Serial I/O tool.

• Chapter 26, “Using the Sound Tool API,” describes the API for
the Sound tool.

• Chapter 27, “Using the Text Tool API,” describes the API for the
Text tool.

• Chapter 28, “Using the Threshold Tool API,” describes the API
for the Threshold tool.

• Chapter 29, “Creating DT Vision Foundry Tools,” describes how
to create custom tools using DT Vision Foundry.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information or information that requires
special emphasis, cautions provide information to help you avoid
losing data or damaging your equipment, and warnings provide
information to help you avoid catastrophic damage to yourself or
your equipment.
xiii

About this Manual

xiv
• Function names and items that you select or type are shown in
bold.

• Parameter names are shown in italic.

Related Information

Refer to the following documents for more information on using DT
Vision Foundry:

• DT Vision Foundry User’s Manual, which is shipped with the
software.

• DT Vision Foundry online help, which is part of the DT Vision
Foundry software.

Where to Get Help

Should you run into problems installing or using DT Vision Foundry,
the Data Translation Technical Support Department is available to
provide technical assistance. Refer to page 6 for more information. If
you are outside the U.S. or Canada, call your local distributor, whose
number is listed in your Data Translation product handbook.

1
Introducing the DT Vision

Foundry API
What is the DT Vision Foundry API? . 2

Installation. 5

Service and Support . 6
1

Chapter 1

2

What is the DT Vision Foundry API?
DT Vision Foundry is an application and an API dedicated to
machine vision and image processing. It provides an object-oriented
approach to all of the needed operations for images, region of
interests (ROIs), and other commonly needed operations found in
most imaging processing or machine vision applications. All tools, all
tool APIs, and the DT Vision Foundry main application use this API.

The following subsections describe what the API is and what is not in
more detail.

What the API Is

The DT Vision Foundry API is a small, robust, and easy-to-use core
machine vision API that can be used in all areas of imaging. At the
center of the DT Vision Foundry API are two types of objects: Image
objects and ROI objects.

The API currently supports the following types of Image objects:

• Binary,

• 8-bit grayscale,

• 16-bit grayscale,

• 32-bit grayscale,

• Floating-point grayscale,

• 24-bit RGB true-color, and

• 24-bit HSL color image objects.

All Image objects are derived from a virtual Base Class object and
operate the same way.

Introducing the DT Vision Foundry API

1

1

1

1

1

1

1

1

1

The API currently supports the following ROI objects:

• Point,

• Rectangular,

• Elliptical,

• Line,

• Freehand line,

• Poly line,

• Freehand, and

• Poly freehand.

All ROI objects are derived from a virtual base class ROI object and
operate the same way.

Along with these two central imaging object types, other imaging
objects, including the following, are often used to create imaging
applications:

• Graph and Curve objects are often used for graphing
two-dimensional data that is derived from an image.

• List objects keep a list of any type of DT Vision Foundry base
class that is derived from an object.

• Calibration objects convert pixel measurements to real-world
measurements.

Although the set of objects included in this API is small, each object
tries to supply all needed functionality for its type of object. Image
objects, for example, have methods for displaying the image in
multiple ways, accessing its data in multiple ways, printing the
image, clipboard access, file I/O, and more.

Using this small set of objects, it very easy to implement the DT
Vision Foundry main application and all of its tools.
3

Chapter 1

4

What the API Is Not

Although DT Vision Foundry supplies many common imaging
operations, such as arithmetic, blob analysis, display, filtering,
histograms, line profiles, morphological processing, thresholding,
and more, this specialized functionality is not part of the core API. All
these types of processes are located in separate tool APIs. For more
information on a specific tool API, see the appropriate chapter of this
document.

Note: All tool APIs and the core API work together. If you wish,
you can create a custom tool, a custom machine vision application,
or a custom algorithm that uses every type of functionality at the
same time. Refer to Chapter 29 starting on page 937 for more
information on creating custom tools.

Introducing the DT Vision Foundry API

1

1

1

1

1

1

1

1

1

Installation
The DT Vision Foundry API is installed during the DT Vision
Foundry product installation. Please refer to the installation
instructions in the DT Vision Foundry User’s Manual.
5

Chapter 1

6

Service and Support
The goal of this manual is to help you use the APIs for the DT Vision
Foundry main application and its tools. If you have difficulty using
these APIs, Data Translation’s Technical Support Department is
available to provide technical assistance. Support upgrades, technical
information, and software are also available.

All customers can always obtain the support needed. The first 90
days are complimentary, as part of the product’s original warranty, to
help you get your system running. Customers who call outside of this
time frame can either purchase a support contract or pay a nominal
fee (charged on a per-incident basis).

For “priority support,” purchase a support contract. Support
contracts guarantee prompt response and are very affordable; contact
your local sales office for details.

Refer to the Data Translation Support Policy located at the end of this
manual for a list of services included and excluded in our standard
support offering.

Telephone Technical Support

Telephone support is normally reserved for original warranty and
support-contract customers. Support requests from non-contract or
out-of-warranty customers are processed after requests from original
warranty and support-contract customers.

For the most efficient service, please complete the form on page 8 and
be at your computer when you call for technical support. This
information helps to identify specific system and
configuration-related problems and to replicate the problem in house,
if necessary.

You can reach the Technical Support Department by calling
(508) 481-3700 x1401.

Introducing the DT Vision Foundry API

1

1

1

1

1

1

1

1

1

If you are located outside the USA, call your local distributor. The
name and telephone number of you nearest distributor are provided
in your Data Translation catalog.

If you are leaving a message to request a support call, please include
the following information:

• Your name (please include proper spelling),

• Your company or organization (please include proper spelling),

• A phone number,

• An email address where you can be reached,

• The hardware/software product you need help on,

• A summary of the issue or question you have,

• Your contract number, if applicable, and

• Your product serial number or purchase date.

Omitting any of the above information may delay our ability to
resolve your issue.
7

Chapter 1

8

Information Required for Technical Support

Name:___Phone__________________________

Contract Number: __

Address: ___

__

Data Translation hardware product(s): __

serial number: ___

configuration: ___

Data Translation device driver - SPO number: ___________ ________________________________

___ version: _________________________

Data Translation software - SPO number:_______________ ________________________________

serial number: ________________________________ version:__________________________

PC make/model: ___

operating system: _____________________________ version:__________________________

Windows version: __

processor: ___________________________________ speed:___________________________

RAM: _______________________________________ hard disk space:____________________

network/number of users: _______________________ disk cache:________________________

graphics adapter: _____________________________ data bus:_________________________

I have the following boards and applications installed in my system:____________________________

__

__

I am encountering the following problem(s): __

__

__

__

and have received the following error messages/codes: ____________________________________

__

__

I have run the board diagnostics with the following results: __________________________________

__

You can reproduce the problem by performing these steps:

1. ___

__

2. ___

__

3. ___

__

Introducing the DT Vision Foundry API

1

1

1

1

1

1

1

1

1

E-Mail and Fax Support

You can also get technical support by e-mailing or faxing the
Technical Support Department:

• E-mail: You can reach Technical Support at the following address:
tsupport@datx.com

Ensure that you provide the following minimum information:

− Your name,

− Your company or organization,

− A phone number,

− An email address where you can be reached,

− The hardware/software product you need help on,

− A summary of the issue you are experiencing,

− Your contract number, if applicable, and

− Your product serial number or purchase date.

Omitting any of the above information may delay our ability to
resolve your issue.

• Fax: Please photocopy and complete the form on page 8, then fax
Technical Support at the following number: (508) 481-8620.

Support requests from non-contract and out-of-warranty customers
are processed with the same priority as telephone support requests.

World-Wide Web

For the latest tips, software fixes, and other product information, you
can always access our World-Wide Web site free of charge at the
following address: http://www.datatranslation.com
9

Chapter 1

10

2
Using the DT Vision Foundry

API
Overview of the DT Vision Foundry API 12

The DT Vision Foundry Base Class Object 14

Image Object . 17

ROI Objects . 98

Curve Objects . 137

Graph Objects . 147

List Objects . 175

Calibration Objects . 196

Device Manager Objects . 206
11

Chapter 2

12
Overview of the DT Vision Foundry API
The API for the DT Vision Foundry main application consists of a set
of object-oriented classes that are derived from a base DT Vision
Foundry object. The classes are as follows:

• ROI base objects, which include the following types:

− point,

− line,

− poly line,

− freehand line,

− rectangular,

− elliptical,

− freehand, and

− poly freehand.

• Image base objects, which include the following types:

− binary,

− 24-bit RGB color,

− 24-bit HSL color,

− 8-bit grayscale,

− 32-bit grayscale,

− 16-bit grayscale, and

− floating-point grayscale.

• Curve objects,

• Graph objects,

• List objects,

• Calibration objects, and

• Device Manager objects.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Each class is documented separately in this chapter. After describing
the class in general, each method is described in detail. Methods are
documented in groups according to the operation they perform
instead of alphabetically.

The image and ROI classes are multi-level, virtually-derived objects;
therefore, they are implemented in separate classes. However, their
methods, being truly virtual, operate the same way. For this reason,
the methods are documented only once. For example, the Show()
method operates exactly the same way for all image classes. If any of
the methods for a specific class operates differently, the difference is
noted when the specific method is described.
13

Chapter 2

14
The DT Vision Foundry Base Class Object
All objects in the DT Vision Foundry API are derived from a base
class named CcHLObject; therefore, all DT Vision Foundry objects
contain the following items:

• Name − All objects in DT Vision Foundry can have a name
assigned to them. Using names, it is possible to keep track of
objects. For example, you could request an ROI object from a List
object by asking for the “lower-right” ROI in the list. This is a
convenient method of tracking objects instead of keeping track of
them in the usual ways. This also makes it easy to assign names
to images. The length of the name for all objects is set to the
Windows constant _MAX_PATH.

• Type − In object-oriented programming, it is useful to know what
type of object you are pointing to for error checking reasons. All
objects in DT Vision Foundry have a type assigned to them.

Note: The Base Class object CcHLObject is not meant to be used
directly.

The methods for the Base Class object, grouped by method type, are
listed in Table 1.

Table 1: Base Class Object Methods

Method Type Method Name Description

Name Methods GetName() Returns the name of an object.

SetName() Sets the name of an object.

Type Methods GetType() Returns the object’s type.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name Methods

These methods set and retrieve the name for all object types. This
section describes the name methods in detail.

GetName

SetName

Syntax char* GetName(void);

Description Returns the name of the object.

Return Values

NULL Unsuccessful.

The name of the object. Successful.

Syntax int SetName(char* cNewName);

Description Sets the name of the object.

Parameters

Name:

Description:

cNewName

New name for the object. The length of the
string is limited to _MAX_PATH.

Return Values

–1 Unsuccessful.

0 Successful.
15

Chapter 2

16
Type Method

This method retrieves the object type for all objects. This section
describes the type method in detail.

GetType

Syntax int GetType(void);

Description Returns the object’s type.

Parameters

Name:

Description:

cNewName

New name for the object. The length of the
string is limited to _MAX_PATH.

Return Values

HLOBJECT_UNDEFINED Object has not yet been defined.

HLOBJECT_TYPE_IMAGE Image object. To determine the type of Image
object, see GetImageType() on page 63.

HLOBJECT_TYPE_ROI ROI object. To determine the type of ROI
object, see GetROIType() on page 104.

HLOBJECT_TYPE_CURVE Curve object.

HLOBJECT_TYPE_GRAPH Graph object.

HLOBJECT_TYPE_LIST List object.

HLOBJECT_TYPE_
CALIBRATION

Calibration object.

HLOBJECT_TYPE_NUMBER Number object (used for point and click
scripting).

HLOBJECT_TYPE_STRING String object (used for point and click
scripting).

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Image Object
Image objects are the core objects of the DT Vision Foundry main
application and API. An Image object is a class that supports all of the
needed functionality for all images in an imaging application.

In the field of imaging, different types of images can be used
depending on the requirements of the application. DT Vision
Foundry supports binary, 8-bit, 16-bit, 32-bit, and floating-point
grayscale images, as well as a 24-bit true-color RGB and 24-bit color
HSL images.

All methods that are specific to each type of image (if the API were
written in C) are virtual C++ methods, making them operate the same
way. When writing an application, you can use the base class pointer
with most all methods. For example, when showing an image in a
window, regardless of the image’s type, you can always use the
following code for the operation:

CImage->Show();

The Image objects provided in the DT Vision Foundry API are listed
in Table 2.
17

Chapter 2

18
The hierarchy of the Image object classes is shown in Table 3.

Table 2: Image Objects

Image Objects Description

Binary Image
Object

Contains pixels in the range from 0 to 1 only. A value of 0 is
considered a background value and has a color of white. A value of
1 is considered a foreground value and has a color of black.

8-Bit Grayscale
Image Object

The standard type of image used in almost all of today’s imaging
applications. A pixel in this type of image can have a value from 0 to
255.

16-Bit Grayscale
Image Object

A true 16-bit Image object where each pixel in the image can
contain any value that a 16-bit unsigned integer value can contain
in the operating system. This object linearly scales the 16-bit image
data automatically when displaying it in a window.

32-Bit Grayscale
Image Object

A true 32-bit Image object where each pixel in the image can
contain any value that a 32-bit integer value can contain in the
operating system. These include both negative and positive values.
This object linearly scales the 32-bit image data automatically when
displaying it in a window.

Floating-Point
Grayscale Image
Object

A true floating-point Image object where each pixel in the image
can contain any value that a floating-point value can contain in the
operating system. These include both negative and positive values.
This object linearly scales the floating-point image data
automatically when displaying it in a window.

24-Bit True-Color
RGB Image
Object

A 24-bit RGB true-color Image object. Each pixel in the image
contains an 8-bit red, 8-bit green, and 8-bit blue color plane. This
image can be accessed using its red, green, or blue color planes. It
can also be accessed using its luminance (brightness) value.

24-Bit True-Color
HSL Image
Object

A 24-bit HSL true-color Image object. Each pixel in the image
contains an 8-bit hue, 8-bit saturation, and 8-bit luminance color
plane. This image can be accessed using its hue, saturation, or
luminance color planes. Note that the range for hue, saturation, and
luminance is 0 to 240.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

The methods for the Image objects, grouped by method type, are as
follows:

• Constructor and destructor methods − Standard methods.

• Overlay methods − These methods access the overlay of the
image. All images can have an 8-bit overlay of the exact same size
as the image itself.

• Thresholding methods − These methods show a given threshold
range for a grayscale image in a given color. They provide visual
feedback for thresholding type operations. These methods do not
produce a binary image. To create a binary image from a
grayscale image, see the Threshold tool’s API, described in
Chapter 28 starting on page 925.

• Image allocation methods − These methods allocate, restore, and
save image data. Note that you must first allocate image data
memory before you can use it.

Table 3: Image Object Classes Hierarchy

Class Name Description Include File

CcHLObject DT Vision Foundry Base Class
Object

CcImage Virtual Base Class Image Object C_IMAGE.H

 CcBinaryImage Binary Image Object C_BINARY.H

 Cc24BitRGBImage 24-bit RGB Color Image Object C_24BIT.H

 Cc24BitHSLImage 24-bit HSL Color Image Object C_24BITHSL.H

 CcGrayImage256 8-bit Grayscale Image Object C_GRYIMG.H

 CcGrayImageInt16 16-bit Grayscale Image Object C_GINT16.H

 CcGrayImageInt32 32-bit Grayscale Image Object C_GINT32.H

 CcGrayImageFloat Floating-Point Grayscale Image
Object

C_GFLOAT.H
19

Chapter 2

20
• Image display methods − These methods provide display,
printing, and clipboard access.

• EZ image data access methods − One of the most important
aspects of image processing is accessing the image data. EZ
access is accomplished by virtually overriding the operators ()
and =. Using these operators, accessing the image data is easy
and is independent of the type of image you are using, including
color. You can access both the image data and the image overlay
data using these methods.

• Fast image data access methods − EZ image data access is an easy
way to access image data but, for large operations, it is not as fast
as accessing the data directly using pointers. You can use fast
image data access methods to access the image data and image
overlay data directly.

• Output look-up table methods − Grayscale images always use an
output look-up table when they are displayed. This includes
8-bit, 32-bit, and floating-point grayscale images. These methods
have no effect on color images.

• Instance methods − It is sometimes helpful to differentiate images
with similar features (such as having the same name) by using
instance numbers. These methods set and get the instance
numbers.

• Point conversion methods − When performing operations with
the mouse in a window, it is sometimes necessary to obtain the
location of the mouse pointer with respect to the image or to
real-world coordinates. These methods convert mouse
coordinates into image coordinates and image coordinates into
real-world coordinates.

• List method − If you are writing your own application, you can
use a list method to hold a list of any type of DT Vision Foundry
object. If you are writing a tool to use with DT Vision Foundry, do
not use this list. It is already in use by the application.

• Calibration methods − Calibration methods convert pixel
coordinates to real-world coordinates.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

• 24-Bit RGB true color image specialized methods − These
methods are specific to the 24-bit RGB true-color image. To access
these methods, the pointer must be cast to an RGB color image.

• 24-Bit HSL color image specialized methods − These methods
are specific to the 24-bit HSL color image. To access these
methods, the pointer must be cast to an HSL color image.

• Child image method − This method allows you to get a new
image that is defined by the parent image and an ROI.

Table 4 briefly summarizes the methods for the Image object.

Table 4: Image Object Methods

Method
Type Method Name Method Description

Constructor
& Destructor
Methods

CcImage() Constructor.

~CcImage() Destructor.

Overlay
Methods

CreateOverlay() Allocates the memory for the overlay.

ClearOverlay() Sets all pixels to 0 in the overlay. A
pixel of value 0 is not displayed when
the overlay is displayed on the image.

GetOverlay() Returns a pointer to the overlay data
so that you can access it directly. You
can also use the EZ image data
access operators () and = to access
the overlay data.

ShowOverlay() Displays the overlay on the image in a
window.

FreeOverlay() Frees the memory used for the
overlay.
21

Chapter 2

22
Thresholding
Methods

BeginThresholding() Begins a thresholding operation.

ThresholdImage() Displays the grayscale image in the
specified color for all pixels between
the given threshold range.

ThresholdImageMulti() Thresholds an image using multiple
thresholding regions.

EndThresholding() Ends a thresholding operation.

GetMinPixelValue() Returns the minimum pixel value in
the entire image.

GetMaxPixelValue() Returns the maximum pixel value in
the entire image.

Image
Allocation
Methods

MakeBlankBMP() Allocates and initializes all pixel
values to the given value. Sets the
size of the image.

OpenBMPFile() Opens a standard Windows BMP file
from disk using the given full path
name, allocates memory for the
image data, and sets the size of the
image.

SaveBMPFile() Saves the current image data as a
standard Windows BMP file to disk
using the given full path name.

Image
Display
Methods

Show() Displays the image in the given
window. Can show the window with
different color tables and in different
modes. Color images are always
displayed in true 24-bit color.

Print() Prints an image to the printer.

CopyToClipboard() Copies the image with respect to a
rectangular region to the clipboard.

Table 4: Image Object Methods (cont.)

Method
Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

EZ Image
Data Access

SetOperatorOverloadAccess() Determines whether to change the
image data or to change the image
overlay data when the operators ()
and = are used.

 operator(x,y) and operator= Overloaded methods.

Fast Image
Data Access

SizeOf() Determines the size in bytes of a pixel
element. Used with memmove type
operations so you can have a single
line of code support all image types.

GetHeightWidth() Returns the height and width of the
image so you can correctly calculate
offsets into the image data.

GetImageType() Returns the image type so you know
how to handle accessing the image
data directly.

GetBitMapImageData() Returns a void pointer to the image
data; you must cast the correct type
depending on type of image you are
accessing.

ReScaleImageOnShow() You need to call this method if you
have changed any image data so that
the image is displayed correctly when
it is displayed.

Output
Look-up
Table

GetAutoUpdateDisplay() Returns the mode of operation: Auto
(TRUE) or manual (FALSE).

SetAutoUpdateDisplay() Sets mode of operation: auto (TRUE)
or manual (FALSE).

SetDisplayLUT() Sets the output LUT for the image.

GetDisplayLUT() Gets the output LUT for the image.

Table 4: Image Object Methods (cont.)

Method
Type Method Name Method Description
23

Chapter 2

24
Instance
Methods

SetInstance() Sets the instance number for the
image.

GetInstance() Gets the instance number for the
image.

Point
Conversion

ConvertPointToImageCoords() Converts mouse coordinates to
image coordinates.

ConvertImagePointToWorld
 Coords()

Converts Image coordinates to
real-world coordinates

List Method GetListROI() Returns a pointer to a List object
contained in the image class.

Calibration
Methods

SetCalibrationObject() Sets a Calibration object for use by
the image.

GetCalibrationObject() Returns the Calibration object being
used by the image.

ClearCalibrationObject() Clears the Calibration object being
used by the image.

24-Bit RGB
True Color
Image
Specialized
Methods

SetAccess() Sets the access method of the RGB
color image.

GetAccess() Gets the access method of the RGB
color image.

ThresholdImageRGB() Thresholds the image as a true color
RGB image.

24-Bit HSL
True Color
Image
Specialized
Methods

SetAccess() Sets the access method of the HSL
color image.

GetAccess() Gets the access method of the HSL
color image.

ThresholdImageHSL() Thresholds the image as a true color
HSL image.

Table 4: Image Object Methods (cont.)

Method
Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

24-Bit HSL
True Color
Image
Specialized
Methods
(cont.)

GetBitmapImageDataHSL() Returns a pointer to the HSL image
data.

DoConvert() Converts an RGB image into HSL
format inside an HSL image object.

UpdateRGB() Updates the RGB display data based
on the HSL data.

SetClipping() Enables or disables clipping HSL
values.

Child Image
Method

GetRegion() Allows you to create a new (child)
image that is defined by the parent
image and an ROI.

Table 4: Image Object Methods (cont.)

Method
Type Method Name Method Description
25

Chapter 2

26
Constructor and Destructor Methods

This section describes the constructor and destructor methods for the
Image objects.

CcImage and ~CcImage

Syntax CcImage* CImage=
new CcBinaryImage();

//Binary
CcImage* CImage=

new Cc24BitRGBImage();
//24-bit RGB color

CcImage* CImage=
new Cc24BitHSLImage();
//24-bit HSL color

CcImage* CImage=
new CcGrayImage256();
//8-bit grayscale

CcImage* CImage=
new CcGrayImageInt16();
//16-bit grayscale

CcImage* CImage=
new CcGrayImageInt32();
//32-bit grayscale

CcImage* CImage=
new CcGrayImageFloat();
//floating-point grayscale

Delete CImage;

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Overlay Methods

Often in the field of imaging it is useful to have an image overlay
accompany an image to highlight some aspect of the image. Using an
overlay is a nondestructive method of drawing over the image
instead of the destructive method of drawing in the image.

Each Image object has its own image overlay associated with it. To
use the image overlay, you must first allocate memory for the overlay.
The following is the standard sequence for using an image overlay:

1. Allocate memory for the overlay by calling CreateOverlay().

2. Draw in the overlay by using the EZ image data access operators
= and () or by calling GetOverlay() directly.

3. Display the overlay on the image by calling ShowOverlay().

Include Files C_Binary.h, if using binary images.

C_24Bit.h, if using 24-bit RGB color images.

C_24BitHSL.h, if using 24-bit HSL color
images.

C_GryImg.h, if using 8-bit grayscales.

C_Gint16.h, if using 16-bit grayscales.

C_GInt32.h, if using 32-bit grayscales.

C_GFloat.h, if using floating-point grayscales.

Description These are the standard constructor and
destructor for the Image objects.

Notes The constructor and destructor for all Image
objects are standard. All memory allocated by
all Image objects is released when you delete
the object using its base class pointer.
27

Chapter 2

28
4. Continue to update the overlay and redisplay it as needed. You
can easily clear the overlay by calling ClearOverlay(). When you
create the overlay using CreateOverlay(), the overlay is initially
cleared.

5. When finished, free the memory for the overlay by calling
FreeOverlay(). All memory for the overlay is released when you
delete the Image object; therefore, you do not have to call this
method. However, if you are finished with the overlay, and you
are still using the Image object, you should release the unused
memory for the overlay, so as not to keep valuable system
memory.

Note: The colors are shown as transparent colors. This allows you
to see both the highlighted area and what is in the area at the same
time.

When showing the overlay on the image, the values in the overlay
determine the colors used to draw the overlay. The supported
predefined constant values with corresponding colors are listed in
Table 5.

Table 5: Predefined Constant Values

Pre-Defined Constant Displayed Color

OVERLAY_CLEAR Clear

OVERLAY_RED Red

OVERLAY_GREEN Green

OVERLAY_YELLOW Yellow

OVERLAY_BLUE Blue

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

The overlay methods are described in detail in the remainder of this
section.

CreateOverlay

ClearOverlay

OVERLAY_VIOLET Violet

OVERLAY_CYAN Cyan

OVERLAY_WHITE White

Syntax int CreateOverlay(void);

Include File C_Image.h

Description Allocates memory for the image overlay.

Notes This method allocates and clears (sets to 0) the
memory for the image overlay. The image
overlay is an 8-bit overlay capable of holding
pixel values from 0 to 255. The overlay is the
exact same size (height x width) as the image
itself. You must have valid image data before
calling this method.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int ClearOverlay(void);

Include File C_Image.h

Table 5: Predefined Constant Values (cont.)

Pre-Defined Constant Displayed Color
29

Chapter 2

30
GetOverlay

Description Sets all pixel values in the overlay of the
Image object to 0.

Notes You must first create the overlay for the image
using the method CreateOverlay() before
using any overlay methods.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax BYTE* GetOverlay(void);

Include File C_Image.h

Description Returns a direct pointer to the image overlay
data.

Notes You must first create the overlay for the image
using CreateOverlay() before using any
overlay methods.

You can access image data and image overlay
data within the Image objects using either EZ
image data access methods (described starting
on page 56) or fast image data access methods
(described starting on page 60). For more
examples of how to use these methods, refer
to Chapter 29 starting on page 937.

The returned pointer points to the start of the
image’s overlay data. This is position 0,0.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Notes (cont.) To calculate an offset to any other position
(x,y), use the following equation:

Offset = Width*Y + X;

where, Width is the width of the image, and X
and Y represent the desired position within
the overlay (x,y). This is called direct-access or
fast image data access.

To obtain the height and width of the image
(and thus the height and width of the image
overlay), use the method GetHeightWidth().

Example The following sample code shows how to use
the pointer returned to access the location 5,5
of the image overlay. The overlay pixel is set
at this position to the value 10:

//Get pointer to overlay data
OverlayData=CImage->GetOverlay();
//Get height and width
CImage->GetHeightWidth

(&Height,&Width);
//Calculate offset to the
// desired location
Offset = Width*5 + 5;
//Set pixel at the desired
//location to blue
OverlayData[Offset]=OVERLAY_BLUE;
31

Chapter 2

32
ShowOverlay

Syntax int ShowOverlay(
 HWND hChildWindow,
 WORD wDisplay,
 int iHorzScrolPosition,
 int iVertScrolPosition,
 int iZoom = 1);

or

int ShowOverlay(
 HDC hMemoryDC,
 HWND hChildWindow,
 WORD wDisplay,
 int iHorzScrolPosition,
 int iVertScrolPosition,
 int iZoom = 1);

Include File C_Image.h

Description Draws the image overlay in the given window
or in the given memory device context.

Parameters

Name:

Description:

hMemoryDC

Handle to a memory device context.

Name:

Description:

hChildWindow

The handle of the window in which to display
the image and its overlay.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

wDisplay

The display mode for the image and its
overlay. This can be one of the following:

• SIZE_IMAGE_TO_WINDOW − Displays
the image and its overlay by stretching the
image and overlay to fit inside the window
without resizing the window. The aspect
ratio is lost.

• SIZE_IMAGE_AS_ACTUAL − Displays the
image and its overlay in their actual sizes.
The image and overlay are offset by the
values given in the iHorzScrolPosition and
iVertScrolPosition parameters. The aspect
ratio is retained.

• iHorzScrolPosition − If you use the
scrollbars to help view the image in the
viewport, enter the value of the position of
the horizontal scrollbar. If you are not
using a horizontal scrollbar, enter 0 for this
parameter.

• iVertScrolPosition − If you use the
scrollbars to help view the image in the
viewport, enter the value of the position of
the vertical scrollbar. If you are not using a
vertical scrollbar, enter 0 for this
parameter.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image. The default is no
zooming.
33

Chapter 2

34
Notes Two versions of this method are available. The
first version draws the overlay directly to the
given window. The second version uses the
extra parameter (hMemoryDC) to draw the
overlay into the given memory device context.
Before calling either version, call Show() to
draw the image and then call one of these
methods to draw the overlay on the image.
Show() also has the same parameters and
should be used with the correct version of
ShowOverlay(). The memory device context
version is given for faster drawing of the
image and its overlay.

The overlay is 8 bits and can hold a value
between 0 and 255. If you are using the
overlay to display graphics on the screen, use
only the values associated with a predefined
constant. Using other values may produce
strange effects when the overlay is displayed.

The colors are shown as transparent. This
allows you to see both the highlighted area
and what is in the area at the same time.

When showing the overlay on the image, the
values in the overlay determine the colors
used to draw the overlay. The supported
predefined constant values with
corresponding colors are as follows:

• OVERLAY_CLEAR − Clear.

• OVERLAY_RED − Red.

• OVERLAY_GREEN − Green.

• OVERLAY_YELLOW − Yellow.

• OVERLAY_BLUE − Blue.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

FreeOverlay

Notes (cont.) • OVERLAY_VIOLET − Violet.

• OVERLAY_CYAN − Cyan.

• OVERLAY_WHITE − White.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int FreeOverlay(void);

Include File C_Image.h

Description Releases the memory being used by the image
overlay.

Notes The memory for the image overlay is released
automatically when the Image object is
deleted. You do not need to call this method if
you delete the Image object. Call this method
if you no longer need the image overlay but
are still using the Image object.

Return Values

–1 Unsuccessful.

0 Successful.
35

Chapter 2

36
Thresholding Methods

This group of methods provides visual feedback. For a given
threshold range or multiple threshold ranges (a range between some
given low and high value), you can assign a color for all pixels in the
range to be displayed. You can use this data as visual feedback while
determining proper low and high threshold values before creating a
binary image in a thresholding operation. You can also use this data
in other processes that need to show how pixels are grouped within
an image.

These methods apply to all images. The color Image objects have
extra methods for true RGB and HSL thresholding.

To threshold an image into a binary image, you can use the Threshold
API provided with the Threshold tool. The Threshold tool uses these
methods to allow you to visually select proper thresholding values
before creating a binary image. The Threshold tool then uses its own
API to actually create a binary image. Refer to Chapter 28 starting on
page 925 for more information on the Threshold tool.

Note: The thresholding methods use the linear RGB color table
(CTABLE_TO_LINR_RGB) while thresholding an image. This also
applies to HSL images, which use the RGB data internally for
display purposes.

The color tables are described in Table 6.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Table 6: Color Tables Used By an Image Object

Color Table Description Usage

CTABLE_TO_ORIG_RGB The bitmap’s original
RGB 256 color table.

Used to view a bitmap opened
from disk (not created with DT
Vision Foundry) in its original
state.

CTABLE_TO_LINR_RGB A linear 256-color RGB
color table with all
entries in the color
table set to grayscale
values.

Used to view an RGB or HSL
color image, or a grayscale
image using false coloring.
USED FOR THRESHOLDING

CTABLE_TO_INDEXED256 A linear indexed
256-color grayscale
color table. Provides
faster screen painting
than the RGB
equivalent.

Used to view a grayscale image
in its highest resolution. Cannot
produce false coloring. Not that
using this color table may not
actually give you a visible
enhancement over using the
default 64 grayscale color table
due to the human visual system
and your video board.

CTABLE_TO_INDEXED128 A linear indexed
128-color grayscale
color table.

Used to view a grayscale image
in its second highest resolution.
Cannot produce false coloring.
Note that using this color table
may not actually give you a
visible enhancement over using
the default 64 grayscale color
table due to the human visual
system and your video board.
37

Chapter 2

38
The standard sequence of events for thresholding an image is as
follows:

1. Begin a thresholding operation by calling BeginThresholding().

2. Make sure you are displaying the image using the
CTABLE_TO_LINR_RGB color table, which applies to both RGB
and HSL color images, or you will not see the result of the
thresholding.

3. Threshold the image, using different low and high values, by
calling ThresholdImage(), ThresholdImageMulti(),
ThresholdImageRGB(), or ThresholdImageHSL() multiple
times.

Note: ThresholdImageRGB() is specific to 24-bit RGB color
images; ThresholdImageHSL() is specific to 24-bit HSL color
images.

CTABLE_TO_INDEXED064 A linear indexed 64
color grayscale color
table (the default).

Used to view a grayscale image
in its lowest resolution. This is
the default grayscale color table
used in the DT Vision Foundry
main application. Using only 64
shades of gray to display the
grayscale image leaves more
colors to display other images
more accurately. Using a color
table with more than 64 colors
usually does not enhance the
image’s appearance due to the
human visual system and your
hardware’s limitations.

Table 6: Color Tables Used By an Image Object (cont.)

Color Table Description Usage

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

4. After determining the best low and high values, stop
thresholding the image by calling EndThresholding().

5. If needed, create a binary image (an image containing only
background or foreground pixels) by using the Threshold tool’s
API.

To view an image using all of the color tables, you can use the menu
item Display | Grayscale Color Mode in the DT Vision Foundry
main application. For more information, refer to the DT Vision
Foundry User’s Manual.

The thresholding methods in the main application are described in
detail in the remainder of this section.

BeginThresholding

Syntax int BeginThresholding(
 HWND hChildWindow,
 WORD wPalette);

Include File C_Image.h

Description Begins a thresholding procedure for the
image.

Parameters

Name:

Description:

hChildWindow

Handle of the window in which you want the
image to be displayed while it is being
thresholded.

Name:

Description:

wPalette

Palette/color table to use while thresholding
the image. It must be set to
CTABLE_TO_LINR_RGB.
39

Chapter 2

40
ThresholdImage

Notes This method starts the operation of
thresholding an image only. No visual
feedback is given at this point. You must call
ThresholdImage() and Show() before any
visual feedback occurs.

Make sure you are displaying the image using
the CTABLE_TO_LINR_RGB color table or
you will not see the result of the thresholding.

The CTABLE_TO_LINR_RGB color table
applies to both RGB and HSL color images.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int ThresholdImage(
 HWND hChildWindow,
 float fLOThresholdValue,
 float fHIThresholdValue,
 int iRed,
 int iGreen,
 int iBlue);

Include File C_Image.h

Description Sets all pixels between or equal to the given
low and high threshold values to the specified
color.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Parameters

Name:

Description:

hChildWindow

Handle of the window in which you want the
image to be displayed in while it is being
thresholded. This is the same handle that you
used in BeginThresholding().

Name:

Description:

fLOThresholdValue

Low value in threshold range.

Name:

Description:

fHIThresholdValue

High value in threshold range.

Name:

Description:

iRed

Red portion of RGB color in which to display
the threshold.

Name:

Description:

iGreen

Green portion of RGB color in which to
display the threshold.

Name:

Description:

iBlue

Blue portion of RGB color in which to display
the threshold.

Notes When thresholding an 8-bit grayscale image,
you have exact visual feedback. If the values
in the image are not a 1-to-1 match with the
color table, the image is linearly interpolated
to best show the thresholding. This is the case
for thresholding over an 8-bit image.
41

Chapter 2

42
ThresholdImageMulti

Notes (cont.) When thresholding a 16-bit, 32-bit, or
floating-point image, the data is always
linearly interpolated to best show the
thresholding. For more information, see the
Threshold tool, described in Chapter 28
starting on page 925.

The low and high values in the range are
inclusive (low <= range <= high).

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int ThresholdImageMulti(
 HWND hChildWindow,
 STTHRESHOLD* stThreshold,
 int iNumberOfRegions);

Include File C_Image.h

Description Sets all pixels between or equal to the given
low and high threshold values to the specified
color.

Parameters

Name:

Description:

hChildWindow

Handle of the window in which you want the
image to be displayed while it is being
thresholded. This is the same handle that you
used in BeginThresholding().

Name:

Description:

stThreshold

Pointer to an array of thresholding structures.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

iNumberOfRegions

Number of thresholding structures in the
stThreshold array.

Notes Use this method to threshold an image with
multiple thresholding regions. If you have
only one region, use the simpler
ThresholdImage(). You can have as many
regions as you like. Each region can have a
different color associated with it. Each region
works the same way as a single region used
with ThresholdImage().

When thresholding an 8-bit grayscale image,
you have exact visual feedback. If the values
in the image are not a 1-to-1 match with the
color table, the image is linearly interpolated
to best show the thresholding. This is the case
for thresholding over an 8-bit image.

When thresholding a 16-bit, 32-bit, or
floating-point image, the data is always
linearly interpolated to best show the
thresholding. For more information, see the
Threshold tool, described in Chapter 28
starting on page 925.

The low and high values in the range are
inclusive (low <= range <= high).

The thresholding structure is described as
follows:

struct STTHRESHOLD {
float fLOThresholdValue;
//High Limit of thresholding
//region
float fHIThresholdValue;
43

Chapter 2

44
EndThresholding

GetMinPixelValue

Notes (cont.) //Low Limit of thresholding region
int iRed;
//Color of this region
int iGreen;
int iBlue;
};

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int EndThresholding(void);

Include File C_Image.h

Description Ends a thresholding process.

Notes When you end a thresholding process, the
color table is NOT reset to that of a grayscale
image so that you can view the image data
using this threshold color information later. If
you wish to reset the color table, you must
reset it yourself while in the thresholding
stage.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax float GetMinPixelValue(void);

Include File C_Image.h

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2
GetMaxPixelValue

Description Returns the minimum pixel value contained
in the entire image.

Notes This method is useful for setting initial
thresholding limits. It searches the entire
image for the minimum pixel value in the
image.

Return Values

–1 Unsuccessful.

Minimum pixel value. Successful.

Syntax float GetMaxPixelValue(void);

Include File C_Image.h

Description Returns the maximum pixel value contained
in the entire image.

Notes This method is useful for setting initial
thresholding limits. It searches the entire
image for the maximum pixel value in the
image.

Return Values

–1 Unsuccessful.

Maximum pixel value. Successful.
45

Chapter 2

46
Image Allocation Methods

When you create a new Image object with the new operator, the
memory for the image data itself is not allocated because the Image
object does not know where to obtain the image data or its
dimensions. Another reason for not allocating the image data at this
time is that image data can come from a wide variety of places:
file I/O, imaging boards, serial I/O, parallel I/O, and so on.

Two methods allocate memory for the image data: OpenBMPFile()
and MakeBlankBMP(). You can call these methods multiple times
and you can intermix them while using the same instance of an Image
object. OpenBMPFile() is a dedicated method for opening a
standard noncompressed Windows bitmap file from disk.
MakeBlankBMP() is a generic method that allocates memory for the
image data. You can then retrieve the data for the image from any
source and copy it into the image data using direct pointer access.

The memory for the image data is handled completely by the Image
object. If you called OpenBMPFile() for an image of dimension
512x512 and then called MakeBlankBMP() for an image of
dimension 640x480, the Image object would free and reallocate all
necessary memory for you.

SaveBMPFile() is described here because it best fits into this group.

MakeBlankBMP

Syntax int MakeBlankBMP(
 int iNewHeight,
 int iNewWidth,
 int iNewColor,
 char* cNewName;

Include File C_Image.h

Description Allocates memory for the image data and sets
all pixels in the image to the given value.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Parameters

Name:

Description:

iNewHeight

Desired height for the new image in pixels.

Name:

Description:

iNewWidth

Desired width for the new image in pixels.

Name:

Description:

iNewColor

Initializing value given to all pixels in the new
image.

Name:

Description:

cNewName

Name given to the Image object. If you do not
need to name your object, enter “” for its
name.

Notes This method is normally used to allocate
blank memory before storing incoming image
data from some source into the allocated
memory. The fastest way to transfer the
incoming image data into this memory is by
using a direct pointer. You can obtain a direct
pointer to the memory using the method
GetBitMapImageData().

The memory for the image data is released
when the Image object is deleted.

Return Values

–1 Unsuccessful.

Maximum pixel value. Successful.
47

Chapter 2

48
OpenBMPFile

SaveBMPFile

Syntax int OpenBMPFile(char *cFileName);

Include File C_Image.h

Description Opens a standard Windows bitmap file from
disk.

Parameters

Name:

Description:

cFileName

The full path name of the image file to open.

Notes This method first allocates all needed image
memory before it opens the file from disk. The
file must be a standard 256 color
noncompressed Windows bitmap file for
grayscale images. For 24-bit color images, the
file must be a standard 24-bit true color
Windows bitmap.

Return Values

–1 Unsuccessful.

Maximum pixel value. Successful.

Syntax int SaveBMPFile(char *cFileName);

Include File C_Image.h

Description Saves the image as a standard Windows
bitmap file.

Parameters

Name:

Description:

cFileName

The full path name for the file.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Image Display Methods

Image display methods deal with displaying the image to the screen,
printing the image to the printer, or copying the image to the
Windows clipboard.

When showing the image in a window, you can use any of the
image’s color tables. You can also show the image in its actual size or
stretch the image to fit within the viewport. You can also display the
same image in multiple windows, each using a different color table
and a different display mode.

Notes The image data is saved as a standard 256
color noncompressed Windows bitmap file for
grayscale images. For 24-bit color images, the
image data is saved as a standard 24-bit
true-color Windows bitmap file.

Return Values

–1 Unsuccessful.

Maximum pixel value. Successful.
49

Chapter 2

50
Show

Syntax int Show(
 HWND hChildWindow,
 WORD wPalette,
 WORD wDisplay,
 int iHorzScrolPosition,
 int iVertScrolPosition,
 int iZoom = 1);

or

int Show(
 HDC hMemoryDC,
 HWND hChildWindow,
 WORD wPalette,
 WORD wDisplay,
 int iHorzScrolPosition,
 int iVertScrolPosition,
 int iZoom = 1);

Include File C_Image.h

Description Displays the image in the given window.

Parameters

Name:

Description:

hMemoryDC

Handle to a memory device context.

Name:

Description:

hChildWindow

The handle of the window in which you want
to show the image.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

wPalette

Color table/palette to use when showing the
image. It can be one of the following:

• CTABLE_TO_ORIG_RGB − Original
256-color RGB color table.

• CTABLE_TO_LINR_RGB − 256-color linear
RGB color table, which applies to both
RGB and HSL images.

• CTABLE_TO_INDEXED256 − Linear
indexed 256-color grayscale color table.

• CTABLE_TO_INDEXED128 − Linear
indexed 128-color grayscale color table.

• CTABLE_TO_INDEXED064 − Linear
indexed 64-color grayscale color table.

Name:

Description:

wDisplay

The display mode for the image. It can be one
of the following:

• SIZE_IMAGE_TO_WINDOW − Displays
the image by stretching it to fit in the
current size of the window. The aspect
ratio of image is lost.

• SIZE_IMAGE_AS_ACTUAL − Displays the
image in its actual size. The aspect ratio is
kept.

Name:

Description:

iHorzScrolPosition

If you are using scrollbars to position the
image, enter the position of the horizontal
scrollbar. If you are not using scrollbars, enter
0.
51

Chapter 2

52
Name:

Description:

iVertScrolPosition

If you are using scrollbars to position the
image, enter the position of the vertical
scrollbar. If you are not using scrollbars, enter
0.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image. The default is no
zooming.

Notes This method displays the image in a window.
This window can be any window including
owner draw buttons. It is sometimes useful to
show a thumbnail of an image. The Memory
Images tool provides this functionality by
showing the selected image in a 32x32-owner
draw button. You can display an image in any
window that makes sense for your
application.

The same image can be shown in multiple
windows at the same time using different
display modes (actual size vs. stretching) and
using different color tables. This is an easy
way to view the same image in different ways.

The memory device context version is given
for faster drawing of the image and its
overlay.

Return Values

–1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Print

Syntax int Print(
 HWND hChildWindow=NULL,
 WORD wPalette=CTABLE_TO_LINR_

 RGB,
 WORD wDisplay=0,
 int iHorzScrolPosition=0,
 int iVertScrolPosition=0,
 int iZoom=1);

Include File C_Image.h

Description Prints the image to the printer.

Parameters

Name:

Description:

hChildWindow

The handle of the window in which you want
to show the image.

Name:

Description:

wPalette

The color table/palette to use when showing
the image. It can be one of the following:

• CTABLE_TO_ORIG_RGB − Original 256
color RGB color table.

• CTABLE_TO_LINR_RGB − 256 color linear
RGB color table, which applies to both
RGB and HSL images.

• CTABLE_TO_INDEXED256 − Linear
indexed 256 color grayscale color table.

• CTABLE_TO_INDEXED128 − Linear
indexed 128 color grayscale color table.

• CTABLE_TO_INDEXED064 − Linear
indexed 64 color grayscale color table.
53

Chapter 2

54
Name:

Description:

wDisplay

The display mode for the image. It can be one
of the following:

• SIZE_IMAGE_TO_WINDOW − Display the
image by stretching it to fit in the current
size of the window. The aspect ratio of
image is lost.

• SIZE_IMAGE_AS_ACTUAL − Display the
image in its actual size. The aspect ratio is
kept.

Name:

Description:

iHorzScrolPosition

If you are using scrollbars to position the
image, enter the position of the horizontal
scrollbar. If you are not using scrollbars, enter
0.

Name:

Description:

iVertScrolPosition

If you are using scrollbars to position the
image, enter the position of the vertical
scrollbar. If you are not using scrollbars, enter
0.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image. The default is no
zooming.

Notes The image is printed as large as possible while
keeping its aspect ratio. If all parameters are
given, the image prints exactly as shown in
the given window. If the image uses an
overlay, the overlay is also printed with the
image.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

CopyToClipboard

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int CopyToClipboard(
 HWND hChildWindow,
 WORD wPalette,
 RECT* stRoi=NULL);

Include File C_Image.h

Description Copies the image to the Windows clipboard.

Parameters

Name:

Description:

hChildWindow

The handle to the window in which the image
is displayed.

Name:

Description:

wPalette

Color palette with which the image is
displayed.

Name:

Description:

stRoi

Rectangular region of image to copy to the
clipboard. If left blank or NULL, the entire
image is copied.

Notes Clipboard access is limited to copy. This
functionality is provided so that you can copy
the image into reports and such. Pasting into
the Image object is not supported because
floating-point and 32-bit images are
supported.
55

Chapter 2

56
EZ Image Data Access Methods

One of the most important aspects of image processing is accessing
the image data. This class supports two forms of access: EZ and fast.
EZ access is accomplished by virtually overriding the operators ()
and =. Using these operators, accessing the image data is easy and is
independent of the type of image you are using, including color. You
can access both the image data and the image overlay data using
these methods.

To set the pixel at location 25, 25 to the sum of three other images at
the same location, you could use the following code (even if each of
the images is of a different type):

Image1(25,25);
Image1 = Image2(25,25) + Image3(25,25) +

Image4(25,25);

EZ access is by default set to access the image data. If you are using
an overlay, you can also access the overlay data using the same code.
All you need to do is tell the class which data you want to access. To
access the image overlay data, you could use the following code
(even if each of the images is a different type):

Image1.SetOperatorOverloadAccess (
SET_ACCESS_TO_OVERLAY_DATA);

Image1(25,25);
Image1 = Image2(25,25) + Image3(25,25) +

Image4(25,25);

Return Values

–1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Note: You can use subpixel accuracy or pixel accuracy. If you
supply a floating-point number, subpixel accuracy is used. If you
supply an integer, pixel accuracy is used.

Example:

Subpixel: Image2(25.5,30.3)
Pixel: Image2(25,25)

SetOperatorOverloadAccess

Syntax int SetOperatorOverloadAccess(
 int iAccess);

Include File C_Image.h

Description Sets the mode of operation for the overloaded
operators () and =.

Parameters

Name:

Description:

iAccess

The desired mode of access, which can be one
of the following:

• SET_ACCESS_TO_IMAGE_DATA −
Accesses the image data when using the ()
and = operators.

• SET_ACCESS_TO_OVERLAY_DATA −
Accesses the image overlay data when
using the () and = operators.
57

Chapter 2

58
operator(x,y) and operator=

Notes By default, the () and = operators access the
image data. If you want to access the image
overlay data, call this method using the
SET_ACCESS_TO_OVERLAY_DATA
parameter. Then, when you use the () and =
operators, you access the image overlay data.
To then access the image data, call this method
again using the
SET_ACCESS_TO_IMAGE_DATA parameter.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax CcImage& Image = *CImage;
 Image(x,y);
 Image = 5;

Include File C_Image.h

Description Allows easy access to both image data and
image overlay data with built-in error
checking.

Parameters

Name:

Description:

x

The x-position in the image you want to
access.

Name:

Description:

y

The y-position in the image you want to
access.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Notes By using the (x,y) and = operators, it is
possible to easily access image data or image
overlay data at the desired x,y location. Using
these parameters is the same for all types of
image data, including 24-bit color image data.
Thus, you can mix and match all images using
the same code.

To set the location in the image before
assigning it a new value, you must first use
the () operator followed by an assignment
operator =.

When accessing image data for a 24-bit RGB
or HSL color image in this manner, you can
access each plane of the image. You can also
access the color image using its intensity. For
further information, see SetAccess(),
described on page 85 for RGB images and on
page 90 for HSL images, and GetAccess(),
described on page 86 for RGB images and on
page 90 for HSL images.

You can use subpixel accuracy or pixel
accuracy. If you supply a floating-point
number, subpixel accuracy is used. If you
supply an integer, pixel accuracy is used.

Return Values

A reference to the specified
pixel location.

Successful.

Example Subpixel:
Image2(25.5,30.3)

Pixel:
Image2(25,25)
59

Chapter 2

60
Fast Image Data Access Methods

The EZ image data access method is an easy way to access image
data, but, for large operations, it is not as fast as accessing the data
directly using pointers. You can use fast image data access methods
to access the image data and image overlay data directly. Although
these methods behave the same way for all image types, accessing the
data is done differently. You must be careful not to overrun the array
boundaries and must point to the image data with the correct type of
pointer.

For a detailed example of how to access image data directly, see the
documentation on creating your own custom tools, described in
Chapter 29 starting on page 937. Also, the example change tool
provides all the code necessary to rebuild the entire tool. An example
of how to access the image data both directly and using the EZ
method of access is located in C:\Program Files\Data Translation\
DT Vision Foundry\C++ Devel\Examples\Tools\Change, by
default.

GetBitmapImageData

Syntax VOID* GetBitMapImageData(void);

Include File C_Image.h

Description Returns a pointer to the image data.

Notes To obtain the height and width of the image,
use the method GetHeightWidth().

This returns a pointer to the image data
contained in the Image object. The pointer
returned is a VOID pointer that you must cast
to the correct type of pointer before accessing
the image data.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Notes (cont.) The pointer types are as follows:

• 16-bit grayscale image − unsigned short*

• 32-bit grayscale image −int*

• Floating point grayscale image − float*

• 24-bit color image − RGBTRIPLE*

• 24-bit HSL color image − RGBTRIPLE*;
pointer to the RGB part of the HSL image
object (see also
GetBitmapImageDataHSL())

You can determine the type of image by
calling GetImageType().

The pointer returned points to the start of the
image data. This is position 0,0. To calculate
the offset to any other position (x,y), use the
following equation:

Offset = Width*Y + X;

where, Width is the width of the image, and X
and Y represent the desired position within
the image (X,Y).

Return Values

NULL Unsuccessful.

A pointer to the image data. Successful.
61

Chapter 2

62
GetHeightWidth

Example This is a small pseudo-code example that
shows how to use the pointer returned to
access the location 5,5 of the image data. The
pixel at this position is set to 10:

//Get pointer to image data
ImageData=CImage->

GetBitMapImageData();
//Get height and width
CImage->GetHeightWidth(

&Height,&Width);
//Calculate offset to desired
//location
Offset = Width*5 + 5;
//Set pixel at desired location
//to 10
ImageData[Offset]=10;

Syntax int GetHeightWidth(
 int* iHt,
 int* iWd);

Include File C_Image.h

Description Retrieves the height and width of the image.

Parameters

Name:

Description:

iHt

A pointer to an integer value that accepts the
height of the image.

Name:

Description:

iWd

A pointer to an integer value that accepts the
width of the image.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetImageType

Notes Call this method to obtain the height and
width of the image. Since the image overlay is
always the same size as the image itself, you
can also use these values for the image
overlay.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetImageType(void);

Include File C_Image.h

Description Retrieves the image’s type.

Notes If you have a method that takes base class
pointers so that it can be used with any type of
image and you want to access the image data
directly, you need to know the type of image
you are dealing with. To get the image’s type,
call this method. For a complete example, see
the code supplied with the example change
tool, located in C:\Program Files\Data
Translation\DT Vision Foundry\C++
Devel\Examples\Tools\Change, by default.

Return Values

−1 Unsuccessful.

IMAGE_TYPE_BINARY Binary image.

IMAGE_TYPE_08BIT_GS 8-bit grayscale image.

IMAGE_TYPE_16BIT_GS 16-bit grayscale image.
63

Chapter 2

64
ReScaleImageOnShow

IMAGE_TYPE_32BIT_GS 32-bit grayscale image.

IMAGE_TYPE_FLOAT_GS Floating-point grayscale image.

IMAGE_TYPE_24BIT_RGB 24-bit RGB color image.

IMAGE_TYPE_24BIT_HSL 24-bit HSL color image.

Syntax int ReScaleImageOnShow(void);

Include File C_Image.h

Description Instructs the Image object to rescale the image
data, if necessary, before showing it.

Notes When you modify the image data using the
EZ data access methods, the class knows
about it and automatically determines the best
method of showing the image when Show()
is called. When you access the image data
directly, the class needs to know whether
anything changed so that it can show the
image correctly.

If you change any image data directly, you
must call this method before you call Show()
or the image is not displayed correctly.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SizeOf

Syntax int SizeOf(void);

Include File C_Image.h

Description Returns the size in bytes of a single pixel
element.

Notes When writing methods that handle any image
types that access the image data directly, it is
sometimes necessary to move large amounts
of the image data using the C function
memmove. When using these types of
functions, it is necessary to supply the amount
of data you want moved, in bytes. You could
accomplish this by first getting the image type
and then calling one of four separate
memmove functions that would handle the
situation properly. Instead, you can use this
method to supply the needed information.

This method ensures that existing methods
work in the future with all new image types.

Return Values

−1 Unsuccessful.

Returns the size of a pixel
element in bytes.

Successful.

Example Suppose you want to copy Image1’s data into
Image2, assuming they are the same type and
size of image.

You could write the following code:

int FastCopy(CcImage* CImage1,
CcImage* CImage2)

{
int Height1,Height2,Width1,Width2;
65

Chapter 2

66
Output Look-Up Table Methods

Output look-up table (LUT) methods are provided for grayscale
images only. If called for a color image, these methods return −1.

Grayscale images always use an output LUT when being displayed.
The output LUT is simply the color table you are using to display the
image. This includes 32-bit and floating-point grayscale images.

Example (cont.) //Are they the same type of image
if(CImage1->GetImageType() !=

CImage2->GetImageType())
return(-1);

//Get size of images
CImage1->GetHeightWidth(

&Height1,&Width1);
CImage2->GetHeightWidth(

&Height2,&Width2);
if(Height1 != Height2) return(-1);
if(Width1 != Width2) return(-1);

//Copy data from Image 1 into
//Image 2
memmove(CImage2->

GetBitMapImageData(),
CImage1->GetBitMapImageData(),
 Height1*Width1* CImage1->

SizeOf());
return(0);
}

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

You can also view an output LUT using a transfer curve between the
actual value of the pixels and the color they are displayed as. The
transfer curve can have a different number of points (256, 128, or 64)
depending on the color table you are using. The y-value for all points
is located between 0 and 255. This corresponds to the pixels’
displayed color. The x-value for all points is evenly distributed along
the input axis for all grayscale images. The value of the x-value along
the axis corresponds to the actual value of the pixel that is displayed.
For example, assume that there is a point on the curve at position
5,10. This means that all pixels with a true value of 5 are displayed
with a value of 10. Before they are modified, the color tables are all
linear grayscale. This means that all x- and y-values are the same for
all points. For example, the first five points in the 256 linear grayscale
color table have the following values: 0,0 ; 1,1; 2,2; 3,3; 4,4; and so on,
up to 255,255.

The output of the LUT (the y-values) is always fixed between 0 and
255 for all grayscale image types. If you use a color table with only
128 colors, the range of the points for the output is still fixed between
0 and 255 (not between 0 and 128). The number of colors in the color
table (256, 128, 64) is the number of points along the transfer curve
that maps the image data pixel values to output colors.

The x-positions for 8-bit grayscale images cannot be changed. For
32-bit and floating-point grayscale images, the input to the transfer
curve (the x-values) can be positioned anywhere along the input axis.
This repositioning can happen in one of two ways: automatically or
manually. The default mode of operation is to automatically scale the
input to the transfer curve to best show all pixel values when
displaying the image. Finding the minimum and maximum pixel
values in the entire image does this. The minimum pixel value is the
minimum value on the input transfer curve; the maximum value is
the maximum value on the input transfer curve. All the points
between the minimum and maximum values are linearly
redistributed to best show the image. When redistributing, the
y-values remain the same for all points.
67

Chapter 2

68
You can set the mode of operation to manual using the method
SetAutoUpdateDisplay(). You can then set the actual points for the
transfer curve using GetDisplayLUT() and SetDisplayLUT().

Note: The output LUT, the color table, and the transfer curve are all
the same thing. In image processing terms, they are referred to as the
output LUT. In Windows programming, they are referred to as the
color table. In scientific terms, they are referred to as the transfer
curve. Regardless of what you call it, inside the computer in
Windows programming, the color table displays the image data.

GetAutoUpdateDisplay

Syntax int GetAutoUpdateDisplay(void);

Include File C_Image.h

Description Returns the mode of operation for setting the
output LUT.

Notes Call this method only for 32-bit and
floating-point grayscale images. The mode of
operation for 8-bit grayscale images is always
automatic since there is no need to change the
input scaling for an 8-bit image.

Return Values

−1 Unsuccessful.

1 Automatic mode of operation.

0 Manual mode of operation.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SetAutoUpdateDisplay

GetDisplayLUT

Syntax int SetAutoUpdateDisplay(
BOOL bFlag);

Include File C_Image.h

Description Sets the mode of operation for setting the
output LUT.

Parameters

Name:

Description:

bFlag

Flag for setting the mode of operation, which
can be one of the following:

• TRUE − Automatic mode of operation.

• FALSE − Manual mode of operation.

Notes Call this method only for 32-bit and
floating-point grayscale images. The mode of
operation for 8-bit grayscale images is always
automatic since there is no need to change the
input scaling for an 8-bit image.

Return Values

−1 Unsuccessful

0 Successful.

Syntax int GetDisplayLUT(
 int iColorTableTypeFlag,
 int iColorFlag,
 STPOINTS* stDisplayLUT);

Include File C_Image.h

Description Returns the requested output LUT.
69

Chapter 2

70
Parameters

Name:

Description:

ColorTableTypeFlag

The requested color table. This value can be
one of the following:

• CTABLE_TO_LINR_RGB − Linear 256 color
RGB color table, which applies to both
RGB and HSL images.

• CTABLE_TO_INDEXED256 − Linear 256
color grayscale color table.

• CTABLE_TO_INDEXED128 − Linear 128
color grayscale color table.

• CTABLE_TO_INDEXED064 − Linear 64
color grayscale color table.

Name:

Description:

iColorFlag

The specific color transfer curve within the
color table. This parameter is dependent on
iColorTableTypeFlag. If iColorTableTypeFlag is set
to any of the grayscale color tables, you must
enter the value
HL_COLOR_TABLE_GRAYSCALE. For a
iColorTableTypeFlag of
CTABLE_TO_LINR_RGB, the flag indicates
which RGB color you are requesting. It can be
one of the following:

• HL_COLOR_TABLE_RED − Returns a 256
color transfer curve representing the red
plane of the RGB color table.

• HL_COLOR_TABLE_GREEN − Returns a
256 color transfer curve representing the
green plane of the RGB color table.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Description (cont.): • HL_COLOR_TABLE_BLUE − Returns a
256 color transfer curve representing the
blue plane of the RGB color table.

Name:

Description:

stDisplayLUT

Pointer to a user-allocated array of STPOINTS
capable of holding the requested color table.
An array of 256 STPOINTS can handle any of
the color tables (such as. STPOINTS
stColor[256]).

Notes A binary image supports only the
CTABLE_TO_LINR_RGB color table.

Once you have the returned color table, you
can alter the values in the color table. Once
altered, you can use the altered color table
with the Image object by calling
SetDisplayLUT(). To see the effect of the
altered color table, show the image in a
window by calling Show().

You cannot alter the x-locations for an 8-bit
grayscale Image object because these values
are always fixed between 0 and 255. You need
to alter the end points only for 32-bit and
floating-point images because points between
the end points are always linearly
interpolated to best show the image data (this
is with respect to the x-axis only).

The main purpose of this method is to change
the y- (the output color) value of the color
table. You can set the y-values to any value
between 0 and 255 for any grayscale image. If
you set the values outside the range of 0 to
255, the value are clipped between 0 and 255.
71

Chapter 2

72
Return Values

−1 Unsuccessful

0 Successful.

Example In this example, the 256 color RGB color table
is changed to show all pixel values in the
range of 53 to 153 with a red highlight.

void MakeRed(CcImage* CImage)
{
int x;
STPOINTS stColorTable[256];
//Get red portion of 256 color RGB
//color table from Image object so
//we can alter it
CImage->GetDisplayLUT(

CTABLE_TO_LINR_RGB,
//Get the 256 RGB color table
HL_COLOR_TABLE_RED,
//Get the red plane of the RGB
// color table
 &stColorTable);
//Place the desired info in this
//array
//Alter the color table between
//input values of 53 and 153 to
//have an output color of 255.
//Remember, we are only altering
//the red plane of the overall
//RGB color table. Note how we do
//not alter the x positions of the
//color table
for(x=53; x<=153; x++)
stColortable[x].y = 255;

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SetDisplayLUT

Example (cont.) //Place the altered color table
//back into the Image object
CImage->SetDisplayLUT(

CTABLE_TO_LINR_RGB,
//Get the 256 RGB color table
 HL_COLOR_TABLE_RED,
//Get the red plane of the RGB
//color table
 &stColorTable);

//New red plane for the RGB
//color table
//Redisplay image using the
//altered color table
CImage->Show(hWnd,

CTABLE_TO_LINR_RGB,
//Show using altered color table
 SIZE_IMAGE_AS_ACTUAL,0,0);
}

Syntax int SetDisplayLUT(
 int iColorTableTypeFlag,
 int iColorFlag,
 STPOINTS* stDisplayLUT);

Include File C_Image.h

Description Sets the requested output LUT.
73

Chapter 2

74
Parameters iColorTableTypeFlag

The color table to be set/altered. This value
can be one of the following:

• CTABLE_TO_LINR_RGB − Linear
256-color RGB color table, which applies to
both RGB and HSL images.

• CTABLE_TO_INDEXED256 − Linear
256-color grayscale color table.

• CTABLE_TO_INDEXED128 − Linear
128-color grayscale color table.

• CTABLE_TO_INDEXED064 − Linear
64-color grayscale color table.

Name:

Description:

iColorFlag

Specific color transfer curve within the color
table. This parameter is dependent on
iColorTableTypeFlag.

If iColorTableTypeFlag is set to any of the
grayscale color tables, you must enter
HL_COLOR_TABLE_GRAYSCALE.

If iColorTableTypeFlag is set to
CTABLE_TO_LINR_RGB, you can set one of
the following values for iColorFlag:

• HL_COLOR_TABLE_RED − Sets the
256-color transfer curve representing the
red plane of the RGB color table.

• HL_COLOR_TABLE_GREEN − Sets the
256-color transfer curve representing the
green plane of the RGB color table.

• HL_COLOR_TABLE_BLUE − Sets the 256
color transfer curve representing the blue
plane of the RGB color table.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Instance Methods

It is sometimes helpful to differentiate images of similar features
(such as having the same name) by using instance numbers.

When two images with the same name are present in the system and
in the DT Vision Foundry main application, DT Vision Foundry
assigns unique instance values to the images. This is to help you keep
track of images. If you are creating a tool to use with DT Vision
Foundry, and this tool creates its own image and adds this new image
to the main application’s image list, you must make sure that the
image you add has a unique instance in the system. You can do this
by obtaining the list of images from the main application. Then,
determine whether any other image in the system has the same name
as your image. If you find one or more images with the same name,
assign a unique instance number to your image using SetInstance().
To check the instances of other images, use GetInstance().

The Image object itself makes no use of the instance number.

This section describes the instance methods in detail.

Name:

Description:

stDisplayLUT

Pointer to a user-allocated array of STPOINTS
that is holding the new color table. An array
of 256 STPOINTS can handle any of the color
tables (such as, STPOINTS stColor[256]).

Notes For further information and an example
program, see GetDisplayLUT() on page 69.

Return Values

−1 Unsuccessful

0 Successful.
75

Chapter 2

76
SetInstance

GetInstance

Syntax int SetInstance(int iNewInstance);

Include File C_Image.h

Description Sets the instance number for the object.

Parameters

Name:

Description:

iNewInstance

New instance number for the Image object.

Notes When you create an Image object using the
new operator, the object has an instance value
of 0. The Image object makes no use of the
instance value. This is provided to help keep
track of sequential images or unique images
within your own application and within
DT Vision Foundry.

Return Values

−1 Unsuccessful

0 Successful.

Syntax int GetInstance(void);

Include File C_Image.h

Description Returns the instance number for the object.

Parameters

Name:

Description:

iNewInstance

New instance number for the Image object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2
Point Conversion Methods

DT Vision Foundry is a GUI application. In a GUI application, you
often make use of the mouse or other pointing device. Point
conversion methods convert mouse coordinates into image
coordinates. Mouse coordinates are sent to your Windows procedure
each time you process any type of mouse action.

Notes When you create an Image object using the
new operator, the object has an instance value
of 0. The Image object makes no use of the
instance value. This is provided to help keep
track of sequential images or unique images
within your own application and within
DT Vision Foundry.

Return Values

−1 Unsuccessful

Instance value. Successful.
77

Chapter 2

78
ConvertPointToImageCoords

Syntax int ConvertPointToImageCoords(
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 POINT* stPointLogical,
 POINT* stPointImage,
 int iZoom = 1);

or

int ConvertPointToImageCoords(
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 POINT* stPointLogical,
 STPOINTS* stPointImage,
 int iZoom = 1);

Include File C_Image.h

Description Takes a point given in mouse coordinates and
converts the point into both logical and image
coordinates.

Parameters

Name:

Description:

hChildWindow

Handle to the window to receive the mouse
message (the window in which the image is
displayed).

Name:

Description:

iHorzScrolPos

If the image is being displayed in a window
with scrollbars, specify the position of the
horizontal scrollbar.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

iVertScrolPos

If the image is being displayed in a window
with scrollbars, specify the position of the
vertical scrollbar.

Name:

Description:

wDisplay

The display mode for the image. It can be one
of the following:

• SIZE_IMAGE_TO_WINDOW − Displays
the image by stretching it to fit in the
current size of the window. The aspect
ratio of the image is lost.

• SIZE_IMAGE_AS_ACTUAL − Displays the
image in its actual size. The aspect ratio is
kept.

Name:

Description:

stPointLogical

Pointer to a POINT structure that holds the
returned logical coordinates.

Name:

Description:

stPointImage

Pointer to a POINT or STPOINTS structure
that holds the returned image coordinates.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image, in image coordinates.

Notes Two versions of this method are provided.
They differ only by the stPointImage
parameter. If this parameter is a POINT
structure, the returned coordinates are
pixel-based. If this parameter is an STPOINTS
structure, the returned coordinates are
subpixel based.
79

Chapter 2

80
ConvertImagePointToWorldCoords

Return Values

−1 Unsuccessful

Instance value. Successful.

Syntax int ConvertImagePointToWorld
Coords(

 STPOINTS* stPointImage,
 STPOINTS* stPointWorld);

Include File C_Image.h

Description Converts a point, given in image coordinates,
into a point in real-world coordinates.

Parameters

Name:

Description:

stPointImage

Pointer to a STPOINTS structure that holds
the image coordinates to be converted.

Name:

Description:

stPointWorld

Pointer to a STPOINTS structure to receive the
real-world coordinates.

Notes This method uses the image’s Calibration
object to convert the points. If the Image object
does not have an associated Calibration
object, the points are converted using pixel
coordinates. Thus, the real-world points are
the same as the given image points.

Return Values

−1 Unsuccessful

Instance value. Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

List Method

Two modes of operation are available for ROIs within the DT Vision
Foundry main application: the ROI can be attached to the viewport,
or the ROI can be attached to the image itself. The image contains a
List object, which can contain a list of ROIs to associate with the
image. The image does not use this list internally; it simply contains
it. If you are writing your own application, you can use this list to
hold a list of any type of DT Vision Foundry object. If you are writing
a tool to use with DT Vision Foundry, do not use this list. It is already
in use by the application.

If you are writing your own application and you need the Image
object to keep a list of more than one thing, remember that a list is an
object itself. Thus, you can have the Image object’s list keep a list of
other lists. Then, you can have these lists keep track of anything you
wish. The levels of lists you can have is unlimited.

GetListROI

Syntax CcList* GetListROI(void);

Include File C_Image.h

C_List.h

Description Returns a pointer to the Image object’s
internal List object.

Notes This method was designed specifically for use
by the DT Vision Foundry main application. If
you are creating a tool for use with the DT
Vision Foundry main application, do not use
this List object because it is already in use by
the main application. If you are creating your
own application, you can use this list to hold
any DT Vision Foundry derived object(s).
81

Chapter 2

82
Calibration Methods

Calibration objects convert pixel coordinates to real-world
coordinates. Image objects do not contain their own Calibration
objects. Rather, they are associated with a Calibration object. Since
many Image objects in the system use the same calibration, memory
is not wasted. The methods described in this section are used to
associate, retrieve, and unassociate a Calibration object from Image
objects.

Note: Calibration objects are separate objects and are documented
separately in this document. Refer to page 196 for more information
on Calibration objects.

SetCalibrationObject

Return Values

NULL Unsuccessful

A pointer to the List object. Successful.

Syntax int SetCalibrationObject(
 CcCalibration*

NewCalibrationObject);

Include File C_Image.h

Description Associates the given Calibration object with
the Image object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetCalibrationObject

Parameters

Name:

Description:

NewCalibrationObject

Pointer to the Calibration object to associate
with this Image object.

Notes Calibration objects are created using
information from a given image. They store
the height and width of this image. If you try
to associate a Calibration object with an image
that is a different size (height and width), the
method fails.

Return Values

−1 Unsuccessful

0 Successful.

Syntax CcCalibration *
 GetCalibrationObject(void);

Include File C_Image.h

Description Retrieves the associated Calibration object for
this image if it has one.

Notes If an Image object has no Calibration object
associated with it, this method returns NULL.

Return Values

NULL Unsuccessful

A pointer to the image’s
Calibration object.

Successful.
83

Chapter 2

84
ClearCalibrationObject

24-Bit RGB Specialized Methods

Out of all the methods for the Image object, only
ThresholdImageRGB() is specific to 24-bit color RGB Image objects.
In addition, the SetAccess() and GetAccess() methods, which are
also used for HSL Image objects, are used for 24-bit RGB Image
objects. To access these methods for RGB images, the pointer to the
color Image object must be of the type 24-bit RGB color.

For example, if you are sent a base class image pointer, you must cast
this pointer before you can access these methods. The following
examples show legal and illegal method access:

void SomeFunction(CcImage* CImage)
{

Legal:

Cc24BitRGBImage* C24BitColor =
(Cc24BitRGBImage*)CImage;
C24BitColor->SetAccess(RGB_ACCESS_RED);

Syntax int ClearCalibrationObject(void);

Include File C_Image.h

Description Disassociates any Calibration object that is
associated with this image.

Return Values

−1 Unsuccessful

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Legal:

((Cc24BitRGBImage*)CImage)->SetAccess(
RGB_ACCESS_RED);

Illegal:

CImage->SetAccess(RGB_ACCESS_RED);
}

When you access the image data for a color image using the EZ data
access operators () and =, you can access the red, green, and blue
planes of the RGB color image. You can also access the color image
using its luminance (brightness) value, which is calculated as:

luminance = 0.299*R + 0.587*G + 0.114*B;

This section describes the RGB specialized methods in detail.

SetAccess

Syntax int SetAccess(int iType);

Include File C_Image.h

Description Sets the image data access mode for all RGB
color images.

Parameters

Name:

Description:

iType

Specify the type of access into the color
image’s data. It can be one of the following:

• RGB_ACCESS_LUM − Access the image
data by calculating its luminance value
(the default).

• RGB_ACCESS_RED − Access the image
data by accessing its red plane.
85

Chapter 2

86
GetAccess

Description (cont.): • RGB_ACCESS_GRN − Access the image
data by accessing its green plane.

• RGB_ACCESS_BLU − Access the image
data by accessing its blue plane.

Notes This method sets a static flag in the color
image. When you call this method to set its
access, you are setting the access for all color
images in the entire application.

Return Values

−1 Unsuccessful

0 Successful.

Syntax int GetAccess(void);

Include File C_Image.h

Description Gets the image data access mode for all RGB
color images.

Return Values

−1 Unsuccessful

RGB_ACCESS_LUM Accesses the image data by calculating its
luminance value.

RGB_ACCESS_RED Accesses the image data by accessing its red
plane.

RGB_ACCESS_GRN Accesses the image data by accessing its green
plane.

RGB_ACCESS_BLU Accesses the image data by accessing its blue
plane.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

ThresholdImageRGB

Syntax int ThresholdImageRGB(
 HWND hChildWindow,
 int iRedMin,
 int iRedMax,
 int iGreenMin,
 int iGreenMax,
 int iBlueMin,
 int iBlueMax,
 int iRed,
 int iGreen,
 int iBlue);

Include File C_Image.h

Description Sets all pixels between or equal to the given
low and high threshold values for the
specified color.

Parameters

Name:

Description:

hChildWindow

The handle of the window in which you want
to display the image while it is being
thresholded. This is the same handle that you
used in BeginThresholding().

Name:

Description:

iRedMin

Low value in the red threshold range.

Name:

Description:

iRedMax

High value in the red threshold range.

Name:

Description:

iGreenMin

Low value in the green threshold range.

Name:

Description:

iGreenMax

High value in the green threshold range.
87

Chapter 2

88
Name:

Description:

iBlueMin

Low value in the blue threshold range.

Name:

Description:

iBlueMax

High value in the blue threshold range.

Name:

Description:

iRed

Red portion of the RGB color in which to
display the threshold.

Name:

Description:

iGreen

Green portion of the RGB color in which to
display the threshold.

Name:

Description:

iBlue

Blue portion of the RGB color in which to
display the threshold.

Notes When thresholding a 24-bit color image, you
may want to threshold all three color planes at
once. This method takes into account all three
color planes of the RGB image at once. If all
three limits for the given pixel are between the
associated thresholding limits then the pixel is
shown in the given iRed, iGreen, and iBlue
colors.

For more information, see the Threshold tool,
in Chapter 28 starting on page 925.

The low and high values in the range are
inclusive (low <= range <= high).

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

24-Bit HSL Specialized Methods

Out of all the methods for the Image object, ThresholdImageHSL(),
GetBitmapImageDataHSL(), DoConvert(), UpdateRGB(), and
SetClipping() are specific to 24-bit HSL Image objects. In addition,
the SetAccess() and GetAccess() methods, which are also used for
RGB Image objects, are used for 24-bit HSL Image objects. To access
these methods for HSL images, the pointer to the color Image object
must be of the type 24-bit HSL color.

For example, if you are sent a base class image pointer, you must cast
this pointer before you can access these methods. The following
examples show legal and illegal method access:

void SomeFunction(CcImage* CImage)
{

Legal:

Cc24BitHSLImage* C24BitColorHSL =
(Cc24BitHSLImage*)CImage;
C24BitColor->SetAccess(HSL_ACCESS_HUE);

Legal:

((Cc24BitHSLImage*)CImage)->SetAccess(
HSL_ACCESS_HUE);

Illegal:

CImage->SetAccess(HSL_ACCESS_HUE);
}

When you access the image data for a color image using the EZ data
access operators () and =, you can access the hue, saturation, and
luminance planes of the HSL color image.

This section describes the HSL specialized methods in detail.
89

Chapter 2

90
SetAccess

GetAccess

Syntax int SetAccess(int iType);

Include File C_Image.h, C_24BitHSL.h

Description Sets the image data access mode for HSL color
images.

Parameters

Name:

Description:

iType

Specify the type of access into the color
image’s data. It can be one of the following:

• HSL_ACCESS_HUE − Access the HSL
image data by calculating its hue plane.

• HSL_ACCESS_SAT − Access the HSL
image data by accessing its saturation
plane.

• HSL_ACCESS_GRN − Access the HSL
image data by accessing its luminance
plane.

Return Values

−1 Unsuccessful

0 Successful.

Syntax int GetAccess(void);

Include File C_Image.h, C_24BitHSL.h

Description Gets the image data access mode for HSL
color images.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

ThresholdImageHSL

Return Values

−1 Unsuccessful

HSL_ACCESS_HUE Accesses the HSL image data by accessing its
hue plane.

HSL_ACCESS_SAT Accesses the HSL image data by accessing its
saturation plane.

HSL_ACCESS_LUM Accesses the HSL image data by accessing its
luminance plane.

Syntax int ThresholdImageHSL(
 HWND hChildWindow,
 int iHueMin,
 int iHueMax,
 int iSatMin,
 int iSatMax,
 int iLumMin,
 int iLumMax,
 int iRed,
 int iGreen,
 int iBlue);

Include File C_Image.h

Description Sets all pixels between or equal to the given
low and high threshold values for the
specified color.
91

Chapter 2

92
Parameters

Name:

Description:

hChildWindow

The handle of the window in which you want
to display the image while it is being
thresholded. This is the same handle that you
used in BeginThresholding().

Name:

Description:

iHueMin

Low value in the hue threshold range.

Name:

Description:

iHueMax

High value in the hue threshold range.

Name:

Description:

iSatMin

Low value in the saturation threshold range.

Name:

Description:

iSatMax

High value in the saturation threshold range.

Name:

Description:

iLumMin

Low value in the luminance threshold range.

Name:

Description:

iLumMax

High value in the luminance threshold range.

Name:

Description:

iRed

Red portion of the RGB color in which to
display the threshold.

Name:

Description:

iGreen

Green portion of the RGB color in which to
display the threshold.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetBitmapImageDataHSL

Name:

Description:

iBlue

Blue portion of the RGB color in which to
display the threshold.

Notes When thresholding a 24-bit color image, you
may want to threshold all three color planes at
once. This method takes into account all three
color planes of the HSL image at once. If all
three limits for the given pixel are between the
associated thresholding limits then the pixel is
shown in the given iRed, iGreen, and iBlue
colors.

For more information, see the Threshold tool,
in Chapter 28 starting on page 925.

The low and high values in the range are
inclusive (low <= range <= high).

Return Values

−1 Unsuccessful.

0 Successful.

Syntax VOID* GetBitMapImageDataHSL(void);

Include File C_Image.h

Description Returns a pointer to the image data.

Notes To obtain the height and width of the image,
use the method GetHeightWidth().
93

Chapter 2

94
DoConvert

Notes (cont.) This returns a pointer to the HSL image data
contained in the Image object. The pointer
returned is a VOID pointer that you must cast
to the RGBTRIPLE* type of pointer (where R
corresponds to the H data, G corresponds to
the S data, and B corresponds to the L data)
before accessing the image data.

The pointer returned points to the start of the
image data. This is position 0,0. To calculate
the offset to any other position (x,y), use the
following equation:

Offset = Width*Y + X;

where Width is the width of the image, and X
and Y represent the desired portion within the
image (X,Y).

Return Values

NULL Unsuccessful.

A pointer to the image data. Successful.

Syntax int DoConvert(void);

Include File C_Image.h, C_24BitHSL.h

Description Converts RGB data into HSL format inside the
HSL Image object.

Notes This method is invoked automatically when a
BMP file is loaded into an HSL object. If you
modify the RGB portion of the object, invoke
this method to update the HSL data.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

UpdateRGB

SetClipping

Return Values

−1 Unsuccessful.

0 Conversion was successful.

Syntax int UpdateRGB(void);

Include File C_Image.h, C_24BitHSL.h

Description Updates the RGB display data based on the
HSL data.

Notes If you manipulate the HSL planes, invoke this
method to update the RGB data, which is used
when displaying the data.

HSL values are limited to a range of 0 to 240. If
you modify the HSL data and enter any
values outside of this range, an error message
is issued when the UpdateRGB() method is
invoked. If this behavior is undesired, use the
SetClipping() method.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax void SetClipping(bool bEnable);

Include File C_Image.h, C_24BitHSL.h

Description Enables HSL data to be clipped automatically
and converted into RGB values.
95

Chapter 2

96
Child Image Method

The GetRegion() method allows you to create a new image (called a
child image) that is defined by the parent image and an ROI.

GetRegion

Parameters

Name:

Description:

bEnable

Set to TRUE to enable HSL value clipping; set
to FALSE to disable HSL value clipping.

Notes HSL values are limited to a range of 0 to 240. If
you modify the HSL data and enter any
values outside of this range, an error message
is issued when the UpdateRGB() method is
invoked. If this behavior is undesired, use the
SetClipping() method.

Return Values None

Syntax CcImage *GetRegion (
CcRoiBase *pRoi,
int iBackColor,
BOOL bPadWidth) = TRUE);

Include File C_Image.h

Description Creates a new (child) image that is defined by
the parent image and an ROI.

Parameters

Name:

Description:

pRoi

A pointer to an ROI object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

iBackColor

Sets the background color of the child image.
Values range from 1 to 255.

Name:

Description:

bPadWidth

If FALSE, the child image is the same width as
the bounding box of the ROI. If TRUE, the
width of the child image is the closest
multiple of four to the width of the bounding
box of the ROI. For example, if the bounding
box of the ROI is 211 and bPadWidth is TRUE,
the width of the child image is 212 (the closest
multiple of 4).

Notes No matter what type of ROI is specified by
pRoi, the new image is shaped like a rectangle
and is the same size as the bounding box for
the ROI.

Only the following image types support this
method:

• IMAGE_TYPE_BINARY

• IMAGE_TYPE_08BIT_GS

• IMAGE_TYPE_16BIT_GS

• IMAGE_TYPE_24BIT_RGB

• IMAGE_TYPE_24BIT_HSL

Return Values A pointer to the new child image.
97

Chapter 2

98
ROI Objects
An ROI object is a class that supports all the needed functionality for
all ROIs in an imaging application.

In the field of imaging, different types of ROIs can be used depending
on the requirements of your application. DT Vision Foundry supplies
the following ROIs:

• Point,

• Rectangular,

• Line,

• Freehand line,

• Poly line,

• Elliptical,

• Poly freehand, and

• Freehand ROIs.

All methods are virtual C methods, making them operate the same
way. Thus, when writing an application, you can use the base class
pointer with almost all methods. For example, when showing an ROI
in a window, regardless of what type of ROI it is, you can always use
the following code for the operation:

CROI->ShowROI();

Because all ROI objects are derived from a base class ROI object, and
all methods specific to a given type of ROI object are virtual, the
methods are documented only once. This is because the methods
behave identically for all types of ROI objects. If a method does not
behave identically for all ROI object types, the method is documented
with the object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Note: The term poly refers to a many-sided (straight sides) line or
freehand ROI.

The hierarchy of the ROI object classes is shown in Table 7.

The methods for the ROI objects, grouped by method type, are as
follows:

• Constructor and destructor methods − Standard methods.

• Type method − This method is used to determine the ROI’s type.

• Selection methods − These methods keep track of ROI selection
and selection colors.

Table 7: Hierarchy of the ROI Object Classes

Class Name Description Include File

CcHLObject DT Vision Foundry Base Class
Object

CcRoiBase Virtual Base Class ROI Object C_RBASE.H

 CcRoiPoint Point ROI C_POINT.H

 CcRoiLine Line ROI C_LINE.H

 CcRoiPolyLine Poly Line ROI C_PLINE.H

 CcRoiFreeHandLine Freehand ROI C_FLINE.H

 CcRoiRect Rectangular ROI C_RECT.H

 CcRoiEllipse Elliptical ROI C_ELIPSE.H

 CcRoiFreeHand Freehand ROI C_FREE.H

 CcRoiPolyFreeHand Poly Freehand ROI C_PFREE.H
99

Chapter 2

100
• Position methods − These methods position the ROI with respect
to image coordinates.

• Mouse methods − These methods interface the ROI to the mouse.

• ROI display methods − This method shows the ROI in a window.

• ROI image access methods − These methods return the pixel
locations of the image inside or on the ROI perimeter.

• Save and restore methods − These methods save and restore an
ROI to or from disk.

• Graphic ROI methods − Some ROIs are graphic ROIs. These ROIs
are not part of the DT Vision Foundry API and are not
documented here. There are ROIs that also contain graphics, such
as the Text ROI object used by the Text tool. The Text ROI works
like an ROI but also shows text on an image and places text on an
image or its overlay.

Table 8 briefly describes the methods for the ROI object.

Table 8: ROI Object Methods

Method
Type Method Name Method Description

Constructor
& Destructor
Methods

CcRoiBase() Constructor.

CcRoiBase() Destructor.

Type
Methods

GetROIType() Returns the ROI’s type: rectangular,
line, elliptical, or freehand.

SetSelected() Selects or unselects the ROI.

IsROISelected() Returns 1 if the ROI is selected or 0 if
the ROI is not selected.

SetSelectedColor() Sets the color used to display a
selected ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Type
Methods
(cont.)

SetUnSelectedColor() Sets the color used to display an
unselected ROI.

GetSelectedColor() Gets the color used to display a
selected ROI.

GetUnSelectedColor() Gets the color used to display an
unselected ROI.

Position
Methods

SetRoiImageCord() Returns a void pointer to a structure
describing the ROI’s position.

GetRoiImageCord() Takes a void pointer to a structure
describing the ROI’s position.

Mouse
Methods

StartMouseDrag() Starts positioning the ROI using the
given mouse coordinates. This is
usually called in conjunction with
pressing down the left mouse button.

DoMouseDrag() Redraws the position of the ROI using
the new mouse coordinates. This is
usually called in conjunction with
dragging the mouse while holding
down the left mouse button.

StopMouseDrag () Stops positioning the ROI at the given
mouse coordinates. This is usually
called in conjunction with releasing
the left mouse button.

GetCurrentBoundingRect() Returns a pointer to a RECT structure
describing the bounding rectangle of
the ROI. A bounding rectangle is the
smallest rectangle that encompasses
the entire ROI.

MouseHitTest() Returns whether the given mouse
coordinates are inside or on the ROI.

Table 8: ROI Object Methods (cont.)

Method
Type Method Name Method Description
101

Chapter 2

102
Constructor and Destructor Methods

This section describes the constructor and destructor for the ROI
objects.

ROI Display
Methods

ShowROI() Displays the ROI in the given window.

ROI Image
Access
Methods

GetBoundingRect() Returns the range of pixels that lie
inside the ROI for the given image.
You use these values as a reference
for going through the entire ROI.

GetYBoundary() Given a y-value, returns an array
containing all the x-pixel locations
inside the ROI. (Use this if you can
because it is a faster method to
process).

GetXBoundary() Given an x-value, returns an array
containing all the y-pixel locations
inside the ROI.

Save and
Restore
Methods

Save() Saves an ROI to disk using a given
file name.

Restore() Restores an ROI from disk using a
given file name.

Graphic ROI
Methods

IsRoiAGraphicObject() Returns true if a ROI is a graphic ROI.
All ROIs documented above are NOT
graphic ROIs.

UpdateImageIfNeeded() Updates the image with its graphics if
the graphics need to be updated.

Table 8: ROI Object Methods (cont.)

Method
Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

CcRoiBase() and ~CcRoiBase()

Syntax CcRoiBase* CRoi=new CcRoiPoint();
 //Point ROI
CcRoiBase* CRoi=new CcRoiLine();
 //Line ROI
CcRoiBase* CRoi=

new CcRoiFreeHandLine();
 //Freehand Line ROI
CcRoiBase* CRoi=
 new CcRoiPolyLine();
 //Poly Line ROI
CcRoiBase * CRoi=new CcRoiRect();
 //Rect ROI
CcRoiBase * CRoi=
 new CcRoiEllipse();
 //Elliptical ROI
CcRoiBase * CRoi=
 new CcRoiFreeHand();
 //Freehand ROI
CcRoiBase * CRoi=
 new CcRoiPolyFreeHand();
 //Poly Freehand ROI
Delete CRoi;

Include File C_Point.h, if using point ROIs.

C_Line.h, if using line ROIs.

C_Fline.h, if using freehand line ROIs.

C_Pline.h, if using Poly line ROIs.

C_Rect.h, if using rectangular ROIs.

C_Elipse.h, if using elliptical ROIs.

C_Free.h, if using freehand ROIs.

C_Pfree.h, if using Poly freehand ROIs.
103

Chapter 2

104
Type Method

This method returns the ROI’s type.

GetROIType

Description These are the standard constructor and
destructor for the ROI objects.

Notes All memory allocated by all ROI objects is
released when the object is deleted using its
base class pointer.

Syntax int GetROIType(void);

Include File C_RBase.h

Description Returns the ROI’s type

Return Values

−1 Unsuccessful.

ROI_POINT Point ROI.

ROI_LINE Line ROI.

ROI_FLINE Freehand line ROI.

ROI_PLINE Poly line ROI.

ROI_RECT Rectangular ROI.

ROI_ELLIPSE Elliptical ROI.

ROI_FREEHAND Freehand ROI.

ROI_PFREEHAND Poly freehand ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Selection Methods

In the DT Vision Foundry main application, each viewport can have
only one active (selected) ROI at the same time. If you are writing a
tool to use with DT Vision Foundry, do not use these methods; they
are already in use by the DT Vision Foundry main application.

In your own application, you can use these methods to select or
unselect any number of ROIs at the same time. When the ROI is
displayed (using the Show() method), a selected ROI is displayed in
the selected color (red, by default) and an unselected ROI is displayed
in the unselected color (green, by default). You can override this
functionality using Show().

Note: By default, the ROI is unselected and is shown using the
unselected color. Thus, if you do not want to use any of this
functionality, simply do nothing and all ROIs are displayed in the
same color (the unselected color).

SetSelected

Syntax int SetSelected(BOOL bSel);

Include File C_RBase.h

Description Selects or unselects the ROI.

Name:

Description:

bSel

Set to TRUE to select the ROI; set to FALSE to
unselect the ROI.

Return Values

−1 Unsuccessful.

0 Successful.
105

Chapter 2

106
IsROISelected

SetSelectedColor

Syntax BOOL IsROISelected(void);

Include File C_RBase.h

Description Returns whether the ROI is selected.

Return Values

False Unselected.

True Selected.

Syntax int SetSelectedColor(
RGBTRIPLE* stColor);

Include File C_RBase.h

Description Sets the color that is used to show a selected
ROI.

Name:

Description:

RGBTRIPLE

Structure that contains the red, green, and
blue colors for the selected color.

Notes The default color for the selected color is red.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SetUnSelectedColor

GetSelectedColor

Syntax int SetUnSelectedColor(RGBTRIPLE*
stColor);

Include File C_RBase.h

Description Sets the color that is used to show an
unselected ROI.

Name:

Description:

RGBTRIPLE

Structure that contains the red, green, and
blue colors for the unselected color.

Notes The default color for the unselected color is
green.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetSelectedColor(
RGBTRIPLE* stColor);

Include File C_RBase.h

Description Gets the color that is used to show a selected
ROI.

Name:

Description:

RGBTRIPLE

Structure that contains the red, green, and
blue colors for the selected color.

Notes The default color for the selected color is red.
107

Chapter 2

108
GetUnSelectedColor

Position Methods

An ROI can be positioned using the mouse, in which case its size and
position are already set, or it can be positioned by calling the position
methods. These methods use a void pointer because the ROIs differ
in what type of information they need to set their positions directly.
For example, you need a single point to set a point ROI, you need two
points to set a RECT ROI, and you need several points to set a
freehand ROI. You can always determine an ROI’s type by calling the
method GetROIType().

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetUnSelectedColor(
RGBTRIPLE* stColor);

Include File C_RBase.h

Description Gets the color that is used to show an
unselected ROI.

Name:

Description:

RGBTRIPLE

Structure that contains the red, green, and
blue colors for the unselected color.

Notes The default color for the unselected color is
green.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

This section describes the position methods in detail.

SetRoiImageCord

Syntax int SetRoiImageCord
VOID* stROI);

Include File C_RBase.h

DT_Str.h

Description Sets the position of the ROI in image
coordinates.

Name:

Description:

stROI

A void pointer to a structure that describes the
perimeter of the ROI. It can be one of the
following types:

• Point − STPOINTS structure (STPOINTS*)
describing the x,y-position of the point; it
can be subpixel.

• Rect − Rectangle structure (RECT*) that
describes the bounding rectangle for the
ROI.

• Line − Rectangle structure (RECT*) that
describes the line for the ROI.

• Poly Line − Structure (PIXELGROUPING*)
that describes each point on the line of the
ROI.

• Freehand Line − Structure
(PIXELGROUPING*) that describes each
point on the line of the ROI.

• Ellipse − Rectangle structure (RECT*) that
describes the ellipse for the ROI.
109

Chapter 2

110
Description (cont): • Freehand − Structure (PIXELGROUPING*)
that describes each point on the perimeter
of the ROI.

• Poly freehand − Structure
(PIXELGROUPING*) that describes each
point on the perimeter of the ROI.

Notes The line, rectangular, and elliptical ROIs take
a Windows RECT structure to describe their
position and size. The freehand ROI takes a
DT Vision Foundry defined
PIXELGROUPING structure, defined as
follows:

struct PixelGroupTag {
 int iRed,iGreen,iBlue;
 int iNumOfPoints;
 POINT *stPOINTS;
 HGLOBAL hstPOINTS;
};
typedef struct PixelGroupTag

PIXELGROUPING;

The iRed, iGreen, and iBlue variables are not
used and should be set to 0. Set the total
number of points in the perimeter of the
freehand ROI in the variable iNumOfPoints.
The actual points are contained in the array of
POINT structures, stPOINTS. Allocate the
memory with the SDK function
GlobalAlloc(). Store the handle to the
memory in the hstPOINTS variable.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetRoiImageCord

Notes (cont.) The following is an example showing how to
allocate the memory:

(PIXELGROUPING stP):
stP.hstPOINTS = GlobalAlloc(

GHND,500*sizeof(POINT));
stp.stPOINTS = (POINT*)

 GlobalLock(stP.hstPOINTS);

The freehand and poly Freehand ROIs are
enclosed ROIs. The last point in the array
should not be the same as the first point in the
array. The ROI object draws them connected,
by default. The poly line and freehand line
ROIs are not enclosed ROIs, but still take the
same PIXELGROUPING structure.

Each point in any freehand, poly freehand,
freehand line, or poly line ROI must be
eight-connected and must not touch any other
points.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax VOID* GetRoiImageCord(void);

Include File C_RBase.h

DT_Str.h

Description Gets the position of the ROI in image
coordinates.
111

Chapter 2

112
Mouse Methods

Almost all interaction for a ROI is provided using the mouse in an
imaging application. This includes creating, selecting, deleting,
moving, copying, resizing, and testing ROIs.

Notes For more information on the returned
structures, refer to SetRoiImageCord() on
page 109.

Return Values

Point STPOINTS structure (STPOINTS*) that
describes the x,y-position of the point; it can
be subpixel.

Rect Rectangle structure (RECT*) that describes the
bounding rectangle for the ROI.

Line Rectangle structure (RECT*) that describes the
line for the ROI.

Freehand Line Structure (PIXELGROUPING*) that describes
the line for the ROI.

Poly Line Structure (PIXELGROUPING*) that describes
each point on the line of the ROI.

Ellipse Rectangle structure (RECT*) that describes the
ellipse for the ROI.

Freehand Structure (PIXELGROUPING*) that describes
each point on the perimeter of the ROI.

Poly Freehand Structure (PIXELGROUPING*) that describes
each point on the perimeter of the ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

ROI Creation

ROI creation is supported using the following methods:

• StartMouseDrag();

• DoMouseDrag(); and

• EndMouseDrag().

In most applications, an ROI is created using a left-button-down,
mouse drag, left-button-up sequence. Accompanying this might be a
key sequence before the action is invoked. DT Vision Foundry uses
the left-button-down key sequence with a SHIFT + CRTL key
sequence before invoking the mouse creation methods. Choose the
key sequence that works best for your application.

The step-by-step process is as follows:

1. Create the desired ROI type with the new operator, as follows:

CcRoiBase* CRoi = new CcRoiRect();

2. Using the returned pointer, CRoi, begin the visual feedback by
calling the start method with the initial mouse coordinates. The
mouse coordinates are sent with each mouse message:

CRoi->StartMouseDrag();

3. Capture the WM_MOUSEMOVE message sent every time you
move (drag) the mouse by calling the DoMouseDrag method
with the new mouse coordinates:

CRoi->DoMouseDrag();

4. When you end the drag by lifting the depressed mouse button,
end the visual feedback by sending the StopMouseDrag()
method:

CRoi->StopMouseDrag();
113

Chapter 2

114
At any time during the process, you can call
GetCurrentBoundingRect() (not GetBoundingRect()) to retrieve
the current bounding rectangle of the ROI in image coordinates.

ROI Selection and Deletion

To select or delete an ROI, you need to know if the correct sequence
for the mouse within or on the ROI has been performed. To determine
if the mouse is in the ROI, call MouseHitTest() with the current
mouse coordinates.

ROI Moving and Copying

This procedure is similar to the creation of the ROI. The only
difference is that you send different flags to StartMouseDrag().

Note: One extra parameter is required for the poly line and poly
freehand ROIs when calling DoMouseDrag().

StartMouseDrag

Syntax int StartMouseDrag(
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 POINT stMousePos,
 int iDrawingMode,
 CcRoiBase* COrigRoi,
 int iZoom = 1);

Include File C_RBase.h

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Description Starts the visual feedback for an ROI create,
move, copy, or resize operation.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which you are
performing the operation.

Name:

Description:

iHorzScrolPos

If using a horizontal scrollbar, enter the
position of the horizontal scrollbar; otherwise
enter 0.

Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI. It can be one of the
following:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

Pointer to the CcImage object on which you
are drawing the ROI.

Name:

Description:

stMousePos

Position of the mouse in mouse coordinates;
this is sent to you along with the mouse
message.
115

Chapter 2

116
Name:

Description:

iDrawingMode

The mouse operation you are starting. It can
be one of the following:

• ROI_MODE_NEW − Creates a new ROI.

• ROI_MODE_MOVE − Moves an existing
ROI.

• ROI_MODE_COPY − Creates a new ROI by
copying an existing ROI.

• ROI_MODE_SIZE − Resizes an existing
ROI. Only supported for line, rectangle,
and ellipse ROIs.

Name:

Description:

COrigRoi

Enter a pointer to the ROI that you are
copying if the iDrawingMode parameter is
ROI_MODE_COPY; otherwise, enter NULL.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image.

Notes Because the ROI can be drawn on grayscale
and color images, the ROI provides visual
feedback by inverting the colors in the image.
If you are copying an ROI, make sure to copy
the same type of ROI that you are creating.

In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

DoMouseDrag

Notes (cont.) In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int DoMouseDrag(
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 POINT stMousePos,
 int iFlag);

Include File C_RBase.h

Description Provides the visual feedback as you drag the
mouse for an ROI create, move, or copy
operation.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which you are
performing the operation.

Name:

Description:

iHorzScrolPos

If you are using a horizontal scrollbar, enter
the position of the horizontal scrollbar;
otherwise, enter 0.
117

Chapter 2

118
Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI. It can be one of the
following:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

A pointer to the CcImage object on which you
are drawing the ROI.

Name:

Description:

stMousePos

The position of the mouse in mouse
coordinates; this is sent to you along with the
mouse message.

Name:

Description:

iFlag

Flag for the poly line and poly freehand ROIs.
If it is not a poly ROI, enter 0. If it is a poly
ROI, enter DO_MOUSE_DRAG_ADD_
BREAK_POINT to start a new line segment.
Otherwise, enter 0.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Notes Because the ROI can be drawn on grayscale
and color images, the ROI provides visual
feedback by inverting the colors in the image.
If the ROI is a poly line or poly freehand ROI,
you need to tell the ROI when to start a new
line segment. To start a new line segment,
enter DO_MOUSE_DRAG_ADD_BREAK_
POINT for the iFlag parameter. If you are not
starting a new line segment, enter 0. DT
Vision Foundry starts a new line segment
when you release the left mouse button.

In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.

In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Return Values

-1 Unsuccessful.

0 Successful.
119

Chapter 2

120
StopMouseDrag

Syntax int StopMouseDrag (
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 POINT stMousePos);

Include File C_RBase.h

Description Ends the visual feedback for an ROI create,
move, or copy operation.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which you are
performing the operation.

Name:

Description:

iHorzScrolPos

If using a horizontal scrollbar, enter the
position of the horizontal scrollbar; otherwise,
enter 0.

Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI. It can be one of the
following:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

Pointer to the CcImage object on which you
are drawing the ROI.

Name:

Description:

stMousePos

Position of the mouse in mouse coordinates;
this is sent to you along with the mouse
message.

Notes Because the ROI can be drawn on grayscale
and color images, the ROI provides visual
feedback by inverting the colors in the image.

In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.

In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.
121

Chapter 2

122
GetCurrentBoundingRect

MouseHitTest

Return Values

−1 Unsuccessful.

0 Successful.

Syntax RECT* GetCurrentBoundingRect(
 void);

Include File C_RBase.h

Description Returns the bounding rectangle for an ROI
while it is being created, moved, or copied.

Notes Because the ROI can be drawn on grayscale
and color images, the ROI provides visual
feedback by inverting the colors in the image.

Return Values

NULL Unsuccessful.

A pointer to a RECT structure
describing the bounding

rectangle of the ROI.

Successful.

Syntax int MouseHitTest(
 hWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 POINT stMousePos
 int iZoom = 1);

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Include File C_RBase.h

Description Tests to see if the given mouse position is
inside or on the ROI.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which you are
performing the operation.

Name:

Description:

iHorzScrolPos

If you are using a horizontal scrollbar, enter
the position of the horizontal scrollbar;
otherwise, enter 0.

Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

A pointer to the CcImage object on which you
are drawing the ROI.
123

Chapter 2

124
Name:

Description:

stMousePos

The position of the mouse in mouse
coordinates; this is sent to you along with the
mouse message.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image.

Notes In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.

In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Return Values

−1 Unsuccessful.

ROI_HIT_TEST_INSIDE Mouse is inside the ROI.

ROI_HIT_TEST_TOP Mouse is at the top of the ROI.

ROI_HIT_TEST_BOTTOM Mouse is at the bottom of the ROI.

ROI_HIT_TEST_RIGHT Mouse is on the right side of the ROI.

ROI_HIT_TEST_LEFT Mouse is on the left side of the ROI.

ROI_HIT_TEST_UL Mouse is on the upper-left corner of the ROI.

ROI_HIT_TEST_UR Mouse is on the upper-right corner of the ROI.

ROI_HIT_TEST_LL Mouse is on the lower-left corner of the ROI.

ROI_HIT_TEST_LR Mouse is on the lower-right corner of the ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

ROI Display Method

This method shows the ROI in a window. It displays a selected ROI in
the selected ROI color and an unselected ROI in the unselected color.
You can override this functionality by forcing the color in which to
display the ROI.

ShowROI

Syntax int ShowROI(
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 int iZoom= -1,
 int iFlag= -1);

or

int ShowROI(
 HDC hMemoryDC,
 HWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 int iZoom = 1,
 int iFlag= -1);

Include File C_RBase.h

Description Shows the ROI in the given window.

Parameters

Name:

Description:

hMemoryDC

Handle to a memory device context.
125

Chapter 2

126
Name:

Description:

hChildWindow

Handle to the window in which you want to
show the ROI.

Name:

Description:

iHorzScrolPos

If you are using a horizontal scrollbar, enter
the position of the horizontal scrollbar;
otherwise, enter 0.

Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

A pointer to the CcImage object on which you
are drawing the ROI.

Name:

Description:

iZoom

The zoom factor with which you are
displaying the image. The default is no
zooming.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

iFlag = −1

You can use this parameter to override the
default functionality of drawing a selected
ROI in the selected color and drawing an
unselected ROI in the unselected color. By
overriding this parameter, the class bypasses
using its internally selected indicator. You can
override the color in which to draw the ROI
by using one of the following values:

• ROI_SELECTED − Draws the ROI in the
selected color.

• ROI_NOT_SELECTED − Draws the ROI in
the unselected color.

Notes Two versions of this method are provided.
The first version draws the ROI directly to the
given window. The second version uses the
extra parameter (hMemoryDC) to draw the
ROI into the given memory device context.
These methods should be used with the
corresponding version of the Image object’s
Show() method, described on page 50.

The memory device context version is given
for faster drawing of the image and its
overlay.

In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.
127

Chapter 2

128
ROI Image Access Methods

The main purpose of an ROI is to determine the location of the
desired pixels within the image to process. These methods return the
pixel locations of the image that lie inside and on the ROI perimeter.

The ROI image access methods work together to supply a standard
way to access the locations of the enclosed pixels within the ROI. The
same code works for all types of ROIs, including freehand ROIs.

The first step is to obtain the bounding rectangle for the ROI. The
bounding rectangle is the smallest rectangle that contains the ROI.
Using the bounding rectangle you can go from the bottom to the top
(the preferred method), processing each horizontal row along the
way, or you can go from the left to the right, processing each vertical
row along the way. Because of the way the memory is organized for
the image, it is better to go from bottom to top.

To process all pixels encompassed by a ROI (this includes pixels on
the perimeter), you can use the following code:

void SomeFunction(CcImage* CImage, CcRoiBase*
CRoi)

{
/*Start of Dec Section*/
 int x,y,z;

Notes (cont.) In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

 int* piRoiData;
 int iNumOfROIPoints;
 RECT* pstROI;
 CcImage& Image = *CImage;
/*End of Dec Section*/
//Get pointer to bounding rectangle
// This code never needs to change
pstROI =(RECT*)CRoi->GetBoundingRect();
if(pstROI == NULL) return(-1);
//Change Image Data
// This code never needs to change
for(y=pstROI->bottom; y<pstROI->top; y++)

{

piRoiData=CRoi->GetXBoundary(y,&iNumOfROIPoints);
if(piRoiData != NULL)
for(z=0; z<iNumOfROIPoints; z++)

{x=piRoiData[z];

//Put changes here to process your custom method
Image(x,y);
Image=47;
}

}
}

Note: This is a code fragment from the code provided with the
example change tool. All code necessary to rebuild the example
change tool is located in C:\Program Files\Data Translation\DT
Vision Foundry\C++ Devel\Examples\Tools\Change, by default.
This is also further discussed on Chapter 21 starting on page 795.
129

Chapter 2

130
GetBoundingRect

GetYBoundary

Syntax RECT* GetBoundingRect(void);

Include File C_RBase.h

Description Returns the bounding rectangle for the ROI.

Notes The bounding rectangle is the smallest
rectangle that encompasses the entire ROI.

Return Values

NULL Unsuccessful.

The bounding rectangle. Successful.

Syntax int* GetYBoundary(
 int iXPos,
 int* iNumOfPoints);

Include File C_RBase.h

Description Returns all points in the ROI with a horizontal
position of iXPos. The returned information is
a vertical line, in image coordinates.

Parameters

Name:

Description:

iXPos

Horizontal position at which to return all
vertical points within the ROI.

Name:

Description:

iNumOfPoints

Pointer to an integer variable that accepts the
total number of points returned.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetXBoundary

Notes For line, rectangular, and elliptical ROIs, this
line is continuous. Freehand ROIs may have
separations in the returned vertical line since
they can take any shape.

Return Values

NULL Unsuccessful.

Returns an array of integers. Successful.

Syntax int* GetXBoundary(
 int iYPos,
 int* iNumOfPoints);

Include File C_RBase.h

Description Returns all points in the ROI with a vertical
position of iYPos. The returned information is
a horizontal line in image coordinates.

Parameters

Name:

Description:

iYPos

Vertical position at which to return all
horizontal points within the ROI.

Name:

Description:

iNumOfPoints

Pointer to an integer variable that accepts the
total number of points returned.

Notes For line, rectangular, and elliptical ROIs, this
line is continuous. Freehand ROIs may have
separations in the returned horizontal line
since they can take any shape.
131

Chapter 2

132
Save and Restore Methods

These methods save and restore an ROI to and from disk.

Save

Notes (cont.) This method is preferred over
GetYBoundary() due to the way memory is
organized within the Image object for the
image data. For continuous lines, you can
calculate the beginning pointer and ending
pointer into the image data, and then access
all pixels by pointer (fast image data access)
rather than using the EZ image data access
operators () and = . An example of this is
given in the code provided with the example
change tool, described in Chapter 21 starting
on page 795. All necessary code to rebuild the
entire example change tool is located in
C:\Program Files\Data Translation\DT
Vision Foundry\C++ Devel\Examples\
Tools\Change, by default.

Return Values

NULL Unsuccessful.

Returns an array of integers. Successful.

Syntax int Save(char* cFileName);

Include File C_RBase.h

Description Selects or unselects the ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Restore

Graphic ROI Methods

Some ROIs are graphic ROIs. These ROIs are not part of the DT
Vision Foundry API and are not documented here. There are ROIs
that also contain graphics, such as the Text ROI object used by the
Text tool. It works like an ROI but also shows text on an image and
places text on an image or its overlay. Their base class methods are
documented in this section.

Parameters

Name:

Description:

cFileName

Full path name of where to save the ROI.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int Restore(
char* cFileName);

Include File C_RBase.h

Description Returns whether the ROI is selected.

Parameters

Name:

Description:

cFileName

Full path name of the ROI to restore.

Return Values

−1 Unsuccessful.

0 Successful.
133

Chapter 2

134
IsRoiAGraphicObject

UpdateImageIfNeeded

Syntax BOOL IsRoiAGraphicObject(void);

Include File C_RBase.h

Description Returns whether this ROI object is a graphic
ROI.

Return Values

False ROI is not a graphic ROI.

True ROI is a graphic ROI.

Syntax int UpdateImageIfNeeded(
 hWND hChildWindow,
 int iHorzScrolPos,
 int iVertScrolPos,
 WORD wDisplay,
 CcImage* CImage,
 int iFlag= -1);

Include File C_RBase.h

Description A graphic ROI updates the given image or
overlay (if needed) when this method is called
by the DT Vision Foundry main application or
by a user-defined application.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which you want to
show the ROI.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

iHorzScrolPos

If you are using a horizontal scrollbar, enter
the position of the horizontal scrollbar;
otherwise, enter 0.

Name:

Description:

iVertScrolPos

If you are using a vertical scrollbar, enter the
position of the vertical scrollbar; otherwise,
enter 0.

Name:

Description:

wDisplay

Mode of display for the image on which you
are drawing the ROI:

• SIZE_IMAGE_AS_ACTUAL − Image is
shown in its actual size.

• SIZE_IMAGE_TO_WINDOW − Image is
stretched to fit in the window.

Name:

Description:

CImage

A pointer to the CcImage object on which you
are drawing the ROI.

Name:

Description:

iFlag = −1

You can use this variable to override the
default functionality of drawing a selected
ROI in the selected color and drawing an
unselected ROI in the unselected color. By
overriding this parameter, the class bypasses
using its internally-selected indicator.
135

Chapter 2

136
Description (cont.): You can override in which color to draw the
ROI by using one of the following values:

• ROI_SELECTED − Draws the ROI in the
selected color.

• ROI_NOT_SELECTED − Draws the ROI in
the unselected color.

Notes This method is called by the GLI/2 main
application just before it draws the image. If
needed, the Graphic object updates the image
data or image overlay data so that the image
appears correctly.

In GLI/2, the origin of the image is the lower,
left corner of the image, by default. Therefore,
a rectangle in GLI/2 is defined as follows: left
= x, top = y1, right = x1, bottom = y.

In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Curve Objects
A Curve object is used for accessing an array of points (a curve) so
that it can be graphed easily using a Graph object. An object derived
from a Base Class object is used for creating an array of points that
may or may not be graphed using a Graph object.

For example, if you had an array of points that you wanted graphed
using a Graph object, you could create a base class Curve object and
associate the array of points with the Curve object. Once associated
with the Curve object, the Curve object can be displayed on a graph
using a Graph object. When using a curve base class directly, you are
responsible for allocating and releasing memory for the points.

On the other hand, you might want to create a class that performs
some type of calculation that derives an array of points, such as a
histogram operation. In this case you would need to allocate memory
for the points and then perform the calculation. To do this, you can
derive a new class from the Curve base class object. This is how the
DT Vision Foundry histogram and line profile classes were created.
Because the histogram class is derived from the curve class, it has all
the necessary functionality built in so that it can be graphed by the
graph class. The functionality that allocates and calculates the
histogram data is what you add in the derived class. When creating
these derived types of classes, it is the responsibility of the derived
class to allocate the memory; the memory is released automatically by
the base class when the object is deleted.

In DT Vision Foundry, an array of points comprises a curve. The
points are contained in a DT Vision Foundry structure named
STPOINTS. STPOINTS is defined as follows:

struct tagPoints{
float fX,fY;

};
typedef struct tagPoints STPOINTS;
137

Chapter 2

138
This structure is just like the Windows POINT structure except that
the x and y variables are floating-point. This is so the Graph object
can graph floating-point data that might be produced during a
complex imaging calculation.

Within the base class are three very important member variables, all
of which are protected and which can be seen by looking at the
header file, C_curve.h:

protected:
int iNumOfPoints;
STPOINTS* stPoints;
HGLOBAL hstPoints;

stPoints is the pointer to the curve data itself (an array of points).
iNumOfPoints is the number of points in the array. If you are using the
base class directly, you can use the method SetCurveData() to make
the stPoints pointer point to your array of points and to set the correct
number of points in the array. Then, you can use the class with a
graph class to graph the curve. Since the class did not allocate the
memory for the array of points, it does not release the memory.

If you are deriving your own class from a curve base class, such as
making your own histogram class, you need to use all of these
member variables. The derived class first allocates memory for the
array of points, and then performs its calculation, placing the
resultant data into the array of points. To do this, you must first
allocate the memory and place the handle to the memory in the
hstPoints member variable. You do this by using the SDK function
GlobalAlloc() as follows:

iNumOfPoints = 100;
hstPoints = GlobalAlloc(GHND,

iNumOfPoints*sizeof(STPOINTS));
stPoints = (STPOINTS*) GlobalLock(hstPoints);

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Note: Do not place the handle into your own variable or the base
class does not release the memory when the object is deleted.

Now, you can perform the calculation and place the resulting data
into the stPoints array. You can then graph the class using a Graph
object, or access the resulting data by calling GetCurveData(). When
you delete the derived class, the memory for the array of points is
released by the base class.

The methods for the base curve class, grouped by method type, are as
follows:

• Constructor and destructor methods − Standard methods.

• Style methods − All curves are displayed using their own curve
style. This includes the color, line width, and line style for the
curve.

• Data access methods − These methods provide direct access to the
curve’s array of points.

Table 9 briefly summarizes the methods for the base curve class.

Table 9: Base Curve Class Methods

Method Type Method Name Method Description

Constructor &
Destructor
Methods

CcCurve() Constructor.

~CcCurve() Destructor.

Style Methods SetCurveStyle() Sets the color, width, and style for the
curve.

GetCurveStyle() Gets the color, width, and style for the
curve.
139

Chapter 2

140
Constructor and Destructor Methods

This section describes the constructor and destructor for the Curve
object.

CcCurve() and ~CcCurve()

Data Access
Methods

GetCurveData() Gets a pointer to the curve data
owned by or being used by the Curve
object.

SetCurveData() Sets the location of where the Curve
object looks for its curve data to
display.

GetNumberOfPoints() Returns the number of curve data
points associated with the Curve
object.

Syntax CcCurve* CCurve = new CcCurve();
//Base curve class

Delete CCurve;

Include File C_Curve.h, if using the base curve class.

Description The standard constructor and destructor for
the object.

Notes Memory not allocated by the class is NOT
released when the object is deleted by its base
class pointer.

Table 9: Base Curve Class Methods (cont.)

Method Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Style Methods

All curves are displayed on the Graph object using their own curve
style, which includes the color, line width, and line style for the curve.
This section describes the style methods in detail.

SetCurveStyle

Syntax int SetCurveStyle(
 int *iCStyle,
 COLORREF *iCColor,
 int *iCWidth);

Include File C_Curve.h

Description Sets the curve’s line color, line width, and line
style.

Parameters

Name:

Description:

iCStyle

The line style used to draw the curve. This
method uses the Windows SDK function
CreatePen(). As stated in the Windows SDK
documentation, this value can be one of the
following:

• PS_SOLID − Pen is solid.

• PS_DASH − Pen is dashed. This style is
valid only when the pen width is one or
less in device units.

• PS_DOT − Pen is dotted. This style is valid
only when the pen width is one or less in
device units.
141

Chapter 2

142
Description (cont.): • PS_DASHDOT − Pen has alternating
dashes and dots. This style is valid only
when the pen width is one or less in device
units.

• PS_DASHDOTDOT − Pen has alternating
dashes and double dots. This style is valid
only when the pen width is one or less in
device units.

• PS_NULL − Pen is invisible.

• PS_INSIDEFRAME − Pen is solid. When
this pen is used in any graphics device
interface (GDI) drawing method that takes
a bounding rectangle, the dimensions of
the figure are shrunk so it fits entirely in
the bounding rectangle, taking into
account the width of the pen. This applies
only to geometric pens.

Name:

Description:

iCColor

The color for the curve. Use the Windows
RGB() macro to define this color.

Name:

Description:

iCWidth

The width of the curve; 1 is the default.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetCurveStyle

Syntax int GetCurveStyle(
 int* iCStyle,
 COLORREF* iCColor,
 int* iCWidth);

Include File C_Curve.h

Description Gets the curve’s line color, line width, and line
style.

Parameters

Name:

Description:

iCStyle

The line style used to draw the curve. This
method uses the Windows SDK function
CreatePen(). As stated in the Windows SDK
documentation, this value can be one of the
following:

• PS_SOLID − Pen is solid.

• PS_DASH − Pen is dashed. This style is
valid only when the pen width is one or
less in device units.

• PS_DOT − Pen is dotted. This style is valid
only when the pen width is one or less in
device units.

• PS_DASHDOT − Pen has alternating
dashes and dots. This style is valid only
when the pen width is one or less in device
units.

• PS_DASHDOTDOT − Pen has alternating
dashes and double dots. This style is valid
only when the pen width is one or less in
device units.
143

Chapter 2

144
Data Access Methods

These methods provide direct access to the curve’s array of points.

GetCurveData

Description (cont.): • PS_NULL − Pen is invisible.

• PS_INSIDEFRAME − Pen is solid. When
this pen is used in any graphics device
interface (GDI) drawing method that takes
a bounding rectangle, the dimensions of
the figure are shrunk so that it fits entirely
in the bounding rectangle, taking into
account the width of the pen. This applies
only to geometric pens.

Name:

Description:

iCColor

The color for the curve.

Name:

Description:

iCWidth

The width of the curve; 1 is the default.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax STPOINTS* GetCurveData(void);

Include File C_Curve.h

DT_Str.h

Description Returns a direct pointer to the curve’s array of
points.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SetCurveData

Notes Before accessing the data, you need to call the
method GetNumberOfPoints() to get the
number of points in the array.

Return Values

NULL Unsuccessful.

 A direct pointer to the curve
data if successful.

Successful.

Syntax int SetCurveData(
 STPOINTS* stNewPoints,
 int iNumberOfPoints);

Include File C_Curve.h

DT_Str.h

Description Associates an array of points with the Curve
object.

Parameters

Name:

Description:

stNewPoints

A pointer to the array of points that you want
to associate with the Curve object.

Name:

Description:

iNumberOfPoints

The number of points in the array.

Notes Do not call this method if you are using a
derived Curve object.

Return Values

−1 Unsuccessful.

0 Successful.
145

Chapter 2

146
GetNumberOfPoints

Syntax int GetNumberOfPoints(void);

Include File C_Curve.h

Description Returns the number of points in the array of
points associated with the Curve object.

Return Values

−1 Unsuccessful.

Returns the number of points. Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Graph Objects
In the field of imaging, it is often quite useful to display
two-dimensional data that is derived from an image. The DT Vision
Foundry API makes this easy by providing the Curve, Graph, and
List objects. You display two-dimensional data by drawing a curve(s)
on a graph.

The Graph object displays a graph in a window. Many options are
provided for displaying the graph. The graph contains a List object
that holds a list of curves. Since a List object can contain an unlimited
number of objects, a graph can contain an unlimited number of
curves. A Curve object consists of a set of points. When you call
CGraph->ShowGraph(), the Graph object draws the graph, and then
draws the curves on the graph.

The Graph object contains internal variables to track a selected curve
and a selected point on the selected curve. A curve becomes the
selected curve when you call methods that return information about
how mouse coordinates are related to points on the graph. Once a
curve and point become selected, you can call other methods that
return or set information about them. Using this type of functionality,
it is easy to program the mouse to graphically interact with the data
that is displayed on the curve. Thus, you can provide visual feedback
and change curve data using pseudo drag-and-drop.

The methods for the Graph object, grouped by method type, are as
follows:

• Constructor and destructor methods − Standard methods.

• Curve list method − This method sets the list of curves for the
graph to display.

• Save and restore methods − These methods save and restore the
graph’s appearance.

• Text methods − These methods set and retrieve the text for the
graph’s title, x-axis label, and y-axis label.
147

Chapter 2

148
• Show/print method − This method shows the graph in a window
or prints the graph to a printer.

• Axis methods − These methods set and return the x- and y-axis
values.

• Mouse methods − These methods allow data interaction between
the graph and the mouse.

• Direct point access methods − These methods allow direct access
to the selected point on the selected curve on the graph.

• Grid marking methods − These methods set and retrieve the grid
markings for the graph.

• Dialog box methods − These methods provide built-in dialog box
procedures for changing the graph style.

Table 10 briefly summarizes the methods for the Graph object.

Table 10: Graph Object Methods

Method Type Method Name Method Description

Constructor &
Destructor
Methods

CcGraph() − Constructor.

~CcGraph() Destructor.

Curve List
Method

SetCurveList() Sets the list of Curve objects to be
drawn by the graph.

Save and
Restore
Methods

SaveAppearance() Saves the current appearance of the
graph to disk using the given full path
name.

RestoreAppearance() Restores a saved appearance from
disk using the given full path name.

Text Methods SetGraphText() Sets the graph’s text.

GetGraphText() Gets the graph’s text.

Show/Print
Method

ShowGraph() Displays the graph and all curves in a
window (or prints them to the printer).

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Axis Methods SetMinMaxValues() Sets new minimum and maximum
values for the x- and y-axis.

GetMinMaxValues() Gets the current minimum and
maximum values for the x- and y-axis.

Mouse
Methods

IsCursorOnBP() Returns whether the given mouse
location is on a curve point. If the
mouse is over a point on a curve, the
point’s location is stored in the class
as the selected point and the curve
on which the point was found
becomes the selected curve.

IsCursorOnSelectedBP() Returns whether or not the given
mouse location is on a selected curve
point. If the mouse is over a point on
the selected curve, the point’s
location is stored in the class as the
selected point.

GetPositionViaMouse() Returns the given mouse coordinates
in graph coordinates. This is useful for
showing the location of the mouse in
graph coordinates as the mouse is
dragged around the graph.

SetSelBPViaMouse() Sets the selected point on the
selected curve on the graph to the
position given in mouse coordinates.

Direct Point
Access
Methods

SetSelBPDirect() Sets the location (position) of the
selected point on the selected curve
to the given location.

GetSelBPDirect() Gets the location of the selected point
on the selected curve on the graph.

Grid Marking
Methods

SetGridMarkings() Sets new grid markings for the graph.

GetGridMarkings() Gets the current grid markings for the
graph.

Table 10: Graph Object Methods (cont.)

Method Type Method Name Method Description
149

Chapter 2

150
Constructor and Destructor Methods

This section describes the constructor and destructor for the Graph
object.

CcGraph() and ~CcGraph()

Dialog Box
Methods

ShowDLBLineStyle() Prompts for the desired color and
style for the selected curve.

ShowDLBSetGridMarkings() Prompts for the desired minor and
major grid markings.

ShowDLBSetMM() Prompts for the desired minimum and
maximum axis values.

ShowDLBTitle() Prompts for the desired graph title,
x-axis label, and y-axis label.

Syntax CcGraph* CGraph = new CcGraph();
Delete CGraph;

Include File C_Graph.h, if using the graph class.

Description The standard constructor and destructor for
the object.

Notes Memory not allocated by the class is NOT
released when the object is deleted using its
class pointer. This includes the list of curves
graphed by the graph class. You are the owner
of the list(s) and you need to free the memory
for them.

Table 10: Graph Object Methods (cont.)

Method Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Curve List Method

A Graph object first displays a graph in a window. It then draws each
curve in its associated list of curves on the graph. The Graph object
does not own the list of curves; you do. You simply need to tell the
graph which list of curves to draw on the graph. This makes it
possible to have multiple lists of curves, and then select which list is
displayed on the graph using only one Graph object. If you give the
Graph object a NULL value for a List object or an empty List object,
no curves are drawn.

SetCurveList

Syntax int SetCurveList(CcList* CList);

Include File C_Graph.h

C_List.h

Description Associates a list of curves to be drawn on the
graph.

Parameters

Name:

Description:

CList

Pointer to a List object that contains a list of
Curve objects.

Return Values

−1 Unsuccessful.

0 Successful.
151

Chapter 2

152
Save and Restore Methods

The Graph object lets you specify how the graph is drawn, including
the following settings:

• Major and minor tick marks;

• Title, x-axis, and y-axis text; and

• Minimum and maximum axis scales.

This determines the overall appearance of the graph. It does not save
the curve’s appearance. You can save and restore all this information
using the methods described in this section.

SaveApperance

Syntax int SaveAppearance(
char* cFileName);

Include File C_Graph.h

Description Saves the current appearance settings of the
graph to disk.

Parameters

Name:

Description:

cFileName

Full path name of the file in which to save the
settings.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

RestoreApperance

Text Methods

Text methods set and retrieve the text for the graph’s title, x-axis
label, and y-axis label. This section describes the text methods in
detail.

SetGraphText

Syntax int RestoreAppearance(
char* cFileName);

Include File C_Graph.h

Description Restores saved appearance settings of the
graph from disk.

Parameters

Name:

Description:

cFileName

Full path name of the file that contains the
settings.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetGraphText(
 char* cTitle,
 char* cXAxis,
 char* cYAxis);

Include File C_Graph.h

Description Sets the graph’s text for its title, x-axis label,
and y-axis label.
153

Chapter 2

154
GetGraphText

Parameters

Name:

Description:

cTitle

Pointer to a string that contains the graph’s
title.

Name:

Description:

cXAxis

Pointer to a string that contains the graph’s
x-axis label.

Name:

Description:

cYAxis

Pointer to a string that contains the graph’s
y-axis label.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetGraphText(
 char* cTitle,
 char* cXAxis,
 char* cYAxis);

Include File C_Graph.h

Description Retrieves the graph’s text for its title, x-axis
label, and y-axis label.

Parameters

Name:

Description:

cTitle

Pointer to a string that contains the graph’s
title.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Show/Print Method

Once you have created the graph, associated a list of curves with the
graph (optional), and set all graph details (optional), you can show
the graph in a window or print the graph to a printer. This section
describes the show/print method in detail.

ShowGraph

Name:

Description:

cXAxis

Pointer to a string that contains the graph’s
x-axis label.

Name:

Description:

cYAxis

Pointer to a string that contains the graph’s
y-axis label.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ShowGraph(
 hWND hWnd,
 HDC hdc,
 int iPrintFlag);

Include File C_Graph.h

Description Displays the graph in the given window or
prints it to the printer.
155

Chapter 2

156
Parameters

Name:

Description:

hWnd

A handle to the window in which to show the
graph.

Name:

Description:

hdc

A handle to the device context for showing or
printing the graph.

Name:

Description:

iPrintFlag

A flag that determines whether to show or
print the graph. It can be one of the following
values:

• 0 − Shows the graph in a window.

• 1 − Prints the graph to a printer.

Return Values

−1 Unsuccessful.

0 Successful.

Example This example shows the graph in a window as
a result of getting the WM_PAINT message.
This code is taken from the Histogram tool
and is shown here with error checking and
variable declaration removed:

void CcDTTool::OnPaint()
{
//This is so the background color
//of the text is the correct color
 ::InvalidateRect(m_hWnd,

NULL,TRUE);
//Call Begin & End Paint and
//get the HDC
CPaintDC dc(this);

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Example (cont.) //Show the graph
 CGraph->ShowGraph(m_hWnd,

dc.m_hDC,0);
}

This example prints the graph to a printer.
This code is taken from the Histogram tool
and is shown here with error checking and
variable declaration removed:

void CcDTTool::OnPrint ()
{
//Get the handle to the printer's
// hDC via the common DLB
PrintDlg(&stPrintSetup);
hdcPrint=stPrintSetup.hDC;

//Set up document size
DocInfo.cbSize = sizeof(DOCINFO);
DocInfo.lpszDocName = "Histogram";
DocInfo.lpszOutput = (LPSTR)NULL;

//Start Document & Page
::StartDoc(hdcPrint,&DocInfo);
::StartPage(hdcPrint);

//Print Graph
 CGraph->ShowGraph(m_hWnd,

hdcPrint,1);

//End Document & Page
::EndPage(hdcPrint);
::EndDoc(hdcPrint);

 //Free memory
 ::DeleteDC(hdcPrint);
}

157

Chapter 2

158
Axis Methods

These methods set and return the minimum and maximum values for
the x- and y-axis. This section describes the axis methods in detail.

SetMinMaxValues

Syntax int SetMinMaxValues(
 float fXMin,
 float fXMax,
 float fYMin,
 float fYMax,
 int iXExp,
 int iXPre,
 int iYExp,
 int iYPre);

Include File C_Graph.h

Description Sets the minimum and maximum values for
the x- and y-axis.

Parameters

Name:

Description:

fXMin

The minimum value for the x-axis.

Name:

Description:

fXMax

The maximum value for the x-axis.

Name:

Description:

fYMin

The minimum value for the y-axis.

Name:

Description:

fYMax

The maximum value for the y-axis.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetMinMaxValues

Name:

Description:

iXExp

The exponent to use to display the x-axis
values.

Name:

Description:

iXPre

The precision behind the decimal point to use
for the values along the x-axis.

Name:

Description:

iYExp

The exponent to use to display the y-axis
values.

Name:

Description:

iYPre

The precision behind the decimal point to use
for the values along the y-axis.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetMinMaxValues(
 float fXMin,
 float fXMax,
 float fYMin,
 float fYMax,
 int iXExp,
 int iXPre,
 int iYExp,
 int iYPre);

Include File C_Graph.h

Description Retrieves the minimum and maximum values
for the x- and y-axis.
159

Chapter 2

160
Parameters

Name:

Description:

fXMin

The minimum value for the x-axis.

Name:

Description:

fXMax

The maximum value for the x-axis.

Name:

Description:

fYMin

The minimum value for the y-axis.

Name:

Description:

fYMax

The maximum value for the y-axis.

Name:

Description:

iXExp

The exponent to use to display the x-axis
values.

Name:

Description:

iXPre

The precision behind the decimal point to use
for the values along the x-axis.

Name:

Description:

iYExp

The exponent to use to display the y-axis
values.

Name:

Description:

iYPre

The precision behind the decimal point to use
for the values along the y-axis.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Mouse Methods

It is sometimes useful to know if an operator is clicking on a point on
a curve. You can use this information to show the exact location of the
point, to move the point using the mouse, and, thus, change its value
graphically, or perform other operations using the mouse.

The mouse methods inform you of the mouse’s location with respect
to the curve’s point locations. This section describes the mouse
methods in detail.

IsCursorOnBP

Syntax int IsCursorOnBP(
HDC hdc,
POINT* stMousePoint);

Include File C_Graph.h

Description Determines if the given mouse position is near
a point on the graph.

Parameters

Name:

Description:

hdc

Handle to the device context that is used to
display the graph.

Name:

Description:

stMousePoint

The mouse position that is sent to you with
the mouse message you are processing.
161

Chapter 2

162
Notes This method checks all the curves on the
graph for a point that is near the given mouse
point. The Graph object converts the mouse
point into graph coordinates. If it finds a point
on a curve, the curve containing the point
becomes the selected curve and the point itself
becomes the selected point. The actual value
returned is the index into the selected curve’s
array of points to the selected point.

Remember that the Graph object is graphing a
list of Curve objects that you associated with
the Graph object using the method
SetCurveList(). Therefore, you own this List
object containing the curves that the Graph
object is graphing. The Graph object selects
this curve by making it the selected curve
within the List object using the method
SelectObjectAtIndex().

Knowing this, it is possible to obtain the
selected point and to change the selected
point directly. You can also set the selected
curve directly by calling
SelectObjectAtIndex(). If you no longer want
any curves selected, you can call the method
SelectObjectAtIndex(-1).

To easily access the selected point on the
selected curve, you can use the methods
SetSelBPDirect() and GetSelBPDirect().

Obtain the hdc parameter as follows:

hdc = ::GetDC(m_hWnd);
CGraph-> IsCursorOnBP(

hdc,stMousePoint);
::ReleaseDC(m_hWnd,hdc);

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

IsCursorOnSelectedBP

Return Values

−1 The mouse position is not near the point.

0 The mouse position is near the point.

Syntax int IsCursorOnSelectedBP(
 hDC hdc,
 POINT* stMousePoint);

Include File C_Graph.h

Description Determines if the given mouse position is near
a point on the selected curve on the graph.

Parameters

Name:

Description:

hdc

Handle to the device context that is used to
display the graph.

Name:

Description:

stMousePoint

The mouse position that is sent to you with
the mouse message you are processing.

Notes This method checks only the selected curve on
the graph for a point that is near the given
mouse point. The Graph object converts the
mouse point into graph coordinates. If it finds
a point on the selected curve, the selected
curve containing the point remains the
selected curve and the point itself becomes the
selected point. The actual value returned is
the index into the selected curve’s array of
points to the selected point.
163

Chapter 2

164
Notes (cont.) Remember that the Graph object is graphing a
list of Curve objects that you associated with
the Graph object by calling SetCurveList().
Therefore, you own the List object that
contains the curves that the Graph object is
graphing. The Graph object selects this curve
by making it the selected curve within the List
object by calling SelectObjectAtIndex().

Knowing this, it is possible to obtain the
selected point and to change the selected
point directly. You can also set the selected
curve directly by calling
SelectObjectAtIndex(). If you no longer want
any curves selected, you can call
SelectObjectAtIndex(-1).

To easily access the selected point on the
selected curve, you can use SetSelBPDirect()
and GetSelBPDirect().

The hdc parameter can be obtained as follows:

hdc = ::GetDC(m_hWnd);
CGraph-> IsCursorOnSelectedBP(

hdc,stMousePoint);
::ReleaseDC(m_hWnd,hdc);

Return Values

−1 The mouse position is not near the point.

0 The mouse position is near the point.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetPositionViaMouse

Syntax int GetPositionViaMouse(
 HDC hdc,
 POINT* stMousePoint,
 POINT* stLogical,
 STPOINTS* stGraph);

Include File C_Graph.h

Description Returns the position of the mouse in graph
coordinates.

Parameters

Name:

Description:

hdc

Handle to the device context that is used to
display the graph.

Name:

Description:

stMousePoint

The mouse position that is sent to you with
the mouse message you are processing.

Name:

Description:

stLogical

Returned position of the mouse in logical
coordinates.

Name:

Description:

stGraph

Returned position of the mouse in graph
coordinates.

Notes You can use this method to provide visual
feedback for the position of the mouse, in
graph coordinates, as the mouse is moved
around in the graph area.
165

Chapter 2

166
SetSelBPViaMouse

Notes (cont.) Obtain the hdc parameter as follows:

hdc = ::GetDC(m_hWnd);
CGraph-> GetPositionViaMouse(

hdc,stMousePoint,
stLogical,stGraph);

::ReleaseDC(m_hWnd,hdc);

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetSelBPViaMouse(
 HDC hdc,
 POINT* stMousePoint);

Include File C_Graph.h

Description Sets the position of the selected point on the
selected curve to that of the given mouse
point.

Parameters

Name:

Description:

hdc

Handle to the device context that is used to
display the graph.

Name:

Description:

stMousePoint

The mouse position that is sent to you with
the mouse message you are processing.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Direct Point Access Methods

If you wish to set or get the location of the selected point on the
selected curve on the graph directly, you can use the direct point
access methods. These methods are useful for exact placement of
points on the graph. This section describes the direct point access
methods in detail.

SetSelBPDirect

Notes You can use this method to provide a pseudo
drag-and-drop movement for the selected
point on the selected curve. The visual
feedback for this can be easily provided by
changing the cursor while the mouse is being
dragged.

Obtain the hdc parameter as follows:

hdc = ::GetDC(m_hWnd);
 CGraph-> SetSelBPViaMouse(

hdc,stMousePoint);
 ::ReleaseDC(m_hWnd,hdc);

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetSelBPDirect(
 float fX,
 float fY);

Include File C_Graph.h

Description Sets the position of the selected point on the
selected curve to the given values.
167

Chapter 2

168
GetSelBPDirect

Parameters

Name:

Description:

fX

Horizontal position of point on graph, given
in graph coordinates.

Name:

Description:

fY

Vertical position of point on graph, given in
graph coordinates.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetSelBPDirect(
 float* fX,
 float* fY);

Include File C_Graph.h

Description Gets the position of the selected point on the
selected curve.

Parameters

Name:

Description:

fX

Horizontal position of point on graph, given
in graph coordinates.

Name:

Description:

fY

Vertical position of point on graph, given in
graph coordinates.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Grid Marking Methods

The graph has minor and major grid (or tick) markings for both the x-
and y-axis. Axis coordinates are displayed at major grid markings. A
grid marking can span the entire graph or appear at the very edge of
the graph. Minor and major grid markings can be set separately. For
an example of this, see any tool that uses a graph (such as the
Histogram tool), and experiment with its grid settings. This section
describes the grid marking methods in detail.

SetGridMarkings

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetGridMarkings(
 int iMajorX,
 int iMajorY,
 int iMinorX,
 int iMinorY,
 int iMajorXFlag,
 int iMajorYFlag,
 int iMinorXFlag,
 int iMinorYFlag);

Include File C_Graph.h

Description Sets the values for the current grid markings
on the graph.
169

Chapter 2

170
Parameters

Name:

Description:

iMajorX

Number of major grid markings for the x-axis.
The minimum value is 2.

Name:

Description:

iMajorY

Number of major grid markings for the y-axis.
The minimum value is 2.

Name:

Description:

iMinorX

Number of minor grid markings for the
x-axis. The minimum value is 0.

Name:

Description:

iMinorY

Number of minor grid markings for the
y-axis. The minimum value is 0.

Name:

Description:

iMajorXFlag

Flag for drawing major x-grid markings. Enter
0 for edge ticks, or 1 for full line.

Name:

Description:

iMajorYFlag

Flag for drawing major y-grid markings.
Enter 0 for edge ticks, or 1 for full line.

Name:

Description:

iMinorXFlag

Flag for drawing minor x-grid markings.
Enter 0 for edge ticks, or 1 for full line.

Name:

Description:

iMinorYFlag

Flag for drawing minor y-grid markings.
Enter 0 for edge ticks, or 1 for full line.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetGridMarkings

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetGridMarkings(
 int* iMajorX,
 int* iMajorY,
 int* iMinorX,
 int* iMinorY,
 int* iMajorXFlag,
 int* iMajorYFlag,
 int* iMinorXFlag,
 int* iMinorYFlag);

Include File C_Graph.h

Description Gets the values for the current grid markings
on the graph.

Parameters

Name:

Description:

iMajorX

Number of major grid markings for the x-axis.
The minimum value is 2.

Name:

Description:

iMajorY

Number of major grid markings for the y-axis.
The minimum value is 2.

Name:

Description:

iMinorX

Number of minor grid markings for the
x-axis. The minimum value is 0.
171

Chapter 2

172
Dialog Box Methods

You can change all the settings for how the graph is displayed and
how the curves are displayed on the graph directly. The dialog box
methods simplify this process by providing a simple user interface to
query for the necessary information so that you do not have to write
this code every time you use a Graph object. This section describes
the dialog box methods in detail.

Name:

Description:

iMinorY

Number of minor grid markings for the
y-axis. The minimum value is 0.

Name:

Description:

iMajorXFlag

Flag for drawing major x-grid markings. Enter
0 for edge ticks, or 1 for full line.

Name:

Description:

iMajorYFlag

Flag for drawing major y-grid markings.
Enter 0 for edge ticks, or 1 for full line.

Name:

Description:

iMinorXFlag

Flag for drawing minor x-grid markings.
Enter 0 for edge ticks, or1 for full line.

Name:

Description:

iMinorYFlag

Flag for drawing minor y-grid markings.
Enter 0 for edge ticks, or 1 for full line.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Note: The graph class uses a resource DLL named DT_GRes.DLL. It
must be in path used by the SDK function LoadLibrary().

ShowDLBLineStyle

ShowDLBSetGridMarkings

Syntax int ShowDLBLineStyle(void);

Include File C_Graph.h

Description Displays a dialog box that allows you to
change the selected curve’s style.

Notes The curve’s style includes its color and style,
but not its width. To change its width, you
must do this directly. This dialog box
procedure calls the Curve object’s methods.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ShowDLBSetGridMarkings(void);

Include File C_Graph.h

Description Displays a dialog box that allows you to
change the grid markings for the graph.

Return Values

−1 Unsuccessful.

0 Successful.
173

Chapter 2

174
ShowDLBSetMM

ShowDLBTitle

Syntax int ShowDLBSetMM(void);

Include File C_Graph.h

Description Displays a dialog box that allows you to
change the minimum and maximum values
for the x- and y-axis.

Notes This procedure also sets the exponent and
precision for the x- and y-axis.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ShowDLBTitle(void);

Include File C_Graph.h

Description Displays a dialog box that allows you to
change the graph’s text.

Notes This includes the graph’s title, x-axis label,
and y-axis label.

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

List Objects
Keeping a list of needed items in any application is tedious and
sometimes error prone. For this reason, a List object is provided to
help you keep track of any DT Vision Foundry derived object. This
list can track all types of Image objects, all types of ROI objects, Curve
objects, Graph objects, and other List objects.

In programming, two common elements are provided to create a list
of items: the array and the linked list. Each has its pros and cons.
Arrays are nice because you can access them by index, they are fast,
and they do not fragment your memory; however, they are limited in
size and sometimes waste memory. Linked lists are nice because they
have no set amount of items that they can hold, but you cannot access
them by index and they fragment your memory. The List object is
fast, had unlimited storage, does not fragment memory, does not
waste memory, and can be accessed by index or as a linked list. In
addition, since all DT Vision Foundry objects have a name, you can
access objects in the list by name.

One last detail about the List object is that it holds other objects, not
just items, and objects need to be deleted. The List object, if requested,
deletes the objects in its list when you delete the List object. If the list
contains other lists of other objects, you can free all memory for all
objects by deleting the top List object. For example, the Blob Analysis
tool uses this feature to easily delete all created blobs and all of their
descendants.

If you wish to keep track of user-created objects, derive these objects
from an DT Vision Foundry object and store them in a DT Vision
Foundry List object. All objects contained by the list can be retrieved,
inserted, and deleted using either an array index, name, or a linked
list. Objects are stored in the list sequentially. The first object stored in
the list has an index of 0, the second object stored in the list has an
index of 1, and so on.
175

Chapter 2

176
 If the list has only three objects, do not attempt to insert it using an
index of 5 (which is a position that does not exist yet). You could,
however, insert an object into a list using an index of 5 if it had 6 or
more objects. An easy way to always make sure you are inserting into
the list properly is to use InsertTail(). It is possible to insert into the
head of the list or into the middle of the list using an index (and feel
free to do so, if required). However, keep in mind that this is more
work for the class and, thus, is slower, and it takes more code on your
part not to insert into a position that does not exist yet.

In a normal or doubly linked list, call GetHead() followed by a
number of calls to GetNext(). You might also call GetTail() followed
by a number of calls to GetPrev(). In addition, you may want to mix
array index calls such as GetAtIndex() with linked list methods such
as GetNext(). When you call a method that is grouped with the get,
insert, or delete method groups, the position of the object that is
returned is marked as the current object. The next methods return the
next object in the list and the previous methods return the previous
object in the list from the current object. For example, if you call
GetAtIndex(5) and then call GetNext(), the object at Index 6 is
returned. If you then call GetNext() again, the object at Index 7 is
returned, and so on. It is suggested that you do not use this type of
coding in your programs because it is not to easy for others to follow.

The list has only one selected object at a time. A selected object in the
list is an object you wish to track. By selecting an object in the list, you
do not have to track it yourself. A selected object stays selected as you
add and delete other objects in the list. To use a selected object, first
select an object in the list, possibly add and delete other objects, and
later request the selected object from the list. If you have no need for
this type of functionality, do not use the selected methods. The class
has no selected object by default.

When adding an object to the list, use InsertTail(). You can add an
unlimited number of objects like this and do not have to worry about
anything else.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

If you need an object from the list or wish to examine all the objects in
the list, perform the following:

1. Get the number of objects in the list by calling the method
GetNumberOfObjects().

2. Look through the list and retrieve each object until you find the
one you want or have processed all of them, as follows:

for(x=0; x<CList->GetNumberOfObjects(); x++)
 {

CSomeObject = (cast to correct type)
 CList->GetAtIndex(x);

(process objects)
}

An alternate way to easily retrieve an object in the list is to use object
names. Remember, all DT Vision Foundry objects have a name.
Before inserting the object into the List object, make sure it has a
name associated with it using the DT Vision Foundry base class
SetName() method. Then, when you want to retrieve the object,
query the List object using GetViaName().

The methods for the List object, grouped by method type, are as
follows:

• Constructor and destructor methods − Standard methods.

• Retrieve methods − These methods retrieve a pointer to the
desired object. You must know what type of object you are
retrieving and cast the pointer accordingly before using these
methods.

• Insert methods − These methods insert a pointer to the desired
object into the list at the desired location. The best way to insert
into the List object is by using InsertTail().

• Delete methods − These methods remove an object from the list.
The List object deletes the object, if requested, when removing it
from its list.
177

Chapter 2

178
• General methods − These methods query and set the list’s
general information.

Table 11 briefly summarizes the methods for the List object.

Table 11: List Object Methods

Method Type Method Name Method Description

Constructor &
Destructor
Methods

CcList() Constructor.

~CcList() Destructor.

Retrieve
Methods

GetHead() Retrieves a pointer to the first object
in the list.

GetNext() Retrieves a pointer to the next object
in the list.

GetPrev() Retrieves a pointer to the previous
object in the list.

GetTail() Retrieves a pointer to the last object
in the list.

GetAtIndex() Retrieves a pointer to the object at the
given zero based index in the list.

GetViaName() Retrieves a pointer to the first object
in the list with the specified name.

GetSelected() Retrieves a pointer to the selected
object in the list.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Insert
Methods

InsertHead() Inserts the given object into the first
position in the list.

InsertTail() Inserts the given object at the end of
the list.

InsertAtIndex() Inserts the given object at the given
index into the list. All other objects
after this are moved down in the list.

InsertSelected() Inserts the given object at the position
of the current object into the list and
makes this object the selected object.
All other objects after this are moved
down in the list.

Delete
Methods

DeleteHead() Deletes the first object in the list.

DeleteTail() Deletes the last object in the list.

DeleteAtIndex() Deletes the object at the given index
from the list.

DeleteViaName() Deletes the first object in the list with
the given name from the list.

DeleteSelected() Deletes the selected object from the
list.

General
Methods

GetNumberOfObjects() Returns the number of objects in the
list.

SelectObjectAtIndex() Selects the object at the given index.

GetSelectedObjectsIndex() Returns the selected object’s index.

GetCurrentObjectsIndex() Returns the current object’s index.

Table 11: List Object Methods (cont.)

Method Type Method Name Method Description
179

Chapter 2

180
Constructor and Destructor Methods

This section describes the constructor and destructor for the List
object.

CcList() and ~CcList()

General
Methods
(cont.)

SetDestructionType() Sets the destruction functionality for
the entire list. When an object is
removed from the list (either using a
delete method or when the list itself is
deleted), the list has the option of
deleting the object as the object is
removed from the list, or simply
removing the object from the list. By
default, the List object does NOT
delete the stored object when
removing it from its list of objects.

Syntax CcList* CList = new CcList();
Delete CList;

Include File C_List.h, if using list class.

Description The standard constructor and destructor for
the List object.

Return Values

−1 Unsuccessful.

0 Successful.

Table 11: List Object Methods (cont.)

Method Type Method Name Method Description

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Retrieve Methods

These methods retrieve a pointer to the desired object. You must
know what type of object you are retrieving and cast the pointer
accordingly before using it. The object you successfully retrieve
becomes the current object in the list.

GetHead

GetNext

Syntax CcHLObject* GetHead(void);

Include File C_List.h

Description Returns the first object in the list.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.

Syntax CcHLObject* GetNext(void);

Include File C_List.h

Description Returns the next object from the current object
in the list.

Notes The current object is set to the desired object
on any successful get, insert, or delete
operation.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.
181

Chapter 2

182
GetPrev

GetTail

GetAtIndex

Syntax CcHLObject* GetPrev(void);

Include File C_List.h

Description Returns the previous object from the current
object in the list.

Notes The current object is set to the desired object
on any successful get, insert, or delete
operation.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.

Syntax CcHLObject* GetTail(void);

Include File C_List.h

Description Returns the last object in the list.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.

Syntax CcHLObject* GetAtIndex(
 const int iIndex);

Include File C_List.h

Description Returns the object at the given index in the
list.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetViaName

Parameters

Name:

Description:

iIndex

Zero based index into the list of objects.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.

Syntax CcHLObject* GetViaName(
const char* cName);

Include File C_List.h

Description Returns the first object in the list with the
given name.

Parameters

Name:

Description:

cName

The exact name of the object to return.

Notes This method returns the first object in the list
with the given exact name. If you have more
than one object in the list with the same name,
this method always returns the first one.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.
183

Chapter 2

184
GetSelected

Insert Methods

These methods insert a pointer to the desired object into the list at the
desired location. The best way to insert into the List object is using
InsertTail(). You do not need to cast the pointer when using the
insert methods. The object you successfully insert becomes the
current object in the list. This section describes the insert methods.

InsertHead

Syntax CcHLObject* GetSelected(void);

Include File C_List.h

Description Returns the selected object in the list.

Notes The list by default has no selected object. You
must first select an object before you can
retrieve it. If no selected object is in the list,
this method returns NULL.

Return Values

NULL Unsuccessful.

A pointer to the desired object. Successful.

Syntax int InsertHead(
CcHLObject* CObject);

Include File C_List.h

Description Inserts the given object into first position in
the list.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

InsertTail

Parameters

Name:

Description:

CcHLObject*

Pointer to the desired object you want
inserted into the list.

Notes The first position in the list is the head
position. It has an index value of 0.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int InsertTail(
CcHLObject* CObject);

Include File C_List.h

Description Inserts the given object into the last position in
the list.

Parameters

Name:

Description:

CcHLObject*

Pointer to the desired object that you want
inserted into the list.

Notes This is the most reliable and fastest way to
insert objects into the list.

Return Values

−1 Unsuccessful.

0 Successful.
185

Chapter 2

186
InsertAtIndex

InsertSelected

Syntax int InsertAtIndex(
 CcHLObject* CObject,
 const int iIndex);

Include File C_List.h

Description Inserts the given object at the given index.

Parameters

Name:

Description:

CcHLObject*

A pointer to the desired object that you want
inserted into the list.

Name:

Description:

IIndex

The zero based index of the position where
you want to insert the given object.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int InsertSelected(
CcHLObject* CObject);

Include File C_List.h

Description Inserts the given object at the current position
in the list and makes this object the selected
object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Delete Methods

These methods remove an object from the list. The List object deletes
the object, if requested, when removing it from its list. The object that
fills the position of the successfully deleted object becomes the
current object in the list.

When an object is deleted from the list, all objects following this
position are moved up in the list. For example, if 10 objects are in the
list, and you delete the object at position 5, objects at indexes 6, 7, 8,
and 9 are moved into positions 5, 6, 7, and 8, respectively. If you are
deleting a large group of objects be aware of this; it is easier and faster
to delete them from the end of the list backwards. This section
describes the delete methods in detail.

Parameters

Name:

Description:

CcHLObject*

Pointer to the desired object that you want
inserted into the list.

Notes If you wish to place the object at a specific
position in the list and make it the selected
object, you can first place it in the list and then
make it the selected object by calling
SelectObjectAtIndex(). If you do not know
the object’s index, see
GetCurrentObjectsIndex().

Return Values

−1 Unsuccessful.

0 Successful.
187

Chapter 2

188
DeleteHead

DeleteTail

Syntax int DeleteHead(void);

Include File C_List.h

Description Removes the first object in the list.

Notes The object that is removed from the list is also
deleted, if requested. You can request the List
object to delete objects by calling
SetDestructionType().

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int DeleteTail(void);

Include File C_List.h

Description Removes the last object in the list.

Notes The object that is removed from the list is also
deleted, if requested. You can request the List
object to delete objects by calling
SetDestructionType().

Return Values

−1 Unsuccessful.

0 Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

DeleteAtIndex

Syntax int DeleteAtIndex(
 const int iIndex);

Include File C_List.h

Description Removes the object at the given index from
the list.

Parameters

Name:

Description:

iIndex

The zero based index for the object that you
want removed.

Notes The object that is removed from the list is also
deleted, if requested. You can request the List
object to delete objects by calling
SetDestructionType().

All objects in the list after the given index are
moved up in the list. For example, if 10 objects
are in the list, and you delete the object at
position 5, objects at indexes 6, 7, 8, and 9 are
moved into positions 5, 6, 7, and 8,
respectively. If you are deleting a large group
of objects using this method, it is easier and
faster to delete them from the end of the list
backwards.

Return Values

−1 Unsuccessful.

0 Successful.
189

Chapter 2

190
DeleteViaName

DeleteSelected

Syntax int DeleteViaName(
 const char* cName);

Include File C_List.h

Description Removes the object with the given name from
the list.

Parameters

Name:

Description:

CName

The name of the object that you want to
remove from the list.

Notes The object that is removed from the list is also
deleted, if requested. You can request the List
object to delete objects by calling
SetDestructionType().

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int DeleteSelected(void);

Include File C_List.h

Description Removes the selected object from the list.

Notes The object that is removed from the list is also
deleted, if requested. You can request the List
object to delete objects by calling
SetDestructionType(). After the selected
object is removed from the list, the list no
longer contains a selected object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

General Methods

The general methods query and set the list’s general information.
This section describes the general methods in detail.

GetNumberOfObjects

SelectObjectsAtIndex

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetNumberOfObjects(void);

Include File C_List.h

Description Returns the number of objects in the list.

Return Values

−1 Unsuccessful.

Returns the number of objects
in the list.

Successful.

Syntax int SelectObjectAtIndex(
const int iIndex);

Include File C_List.h

Description Makes the object at the given index the
selected object in the list.
191

Chapter 2

192
GetSelectedObjectsIndex

GetCurrentObjectsIndex

Parameters

Name:

Description:

iIndex

The zero based index of the object that you
want to be the selected object.

Notes If a selected object already exists in the list, the
object is no longer the selected object. Only
one selected object can be in the list at any
given time.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetSelectedObjectsIndex(void);

Include File C_List.h

Description Returns the zero based index of the selected
object in the list.

Notes If no selected object exists in the list, this
method returns −1.

Return Values

−1 Unsuccessful.

The index. Successful.

Syntax int GetCurrentObjectsIndex(void);

Include File C_List.h

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

SetDestructionType

Description Returns the zero based index of the current
object in the list.

Return Values

−1 Unsuccessful.

The index. Successful.

Syntax int SetDestructionType(int iType);

Include File C_List.h

Description Sets the mode of operation for removing
objects from the list.

Parameters

Name:

Description:

iType

Mode of operation for removing objects from
the list. It can be one of the following:

• LIST_DONT_DELETE_ON_
DESTRUCTOR − Object is removed only
from the list (default).

• LIST_DELETE_ON_DESTRUCTOR
−Object is deleted and removed from the
list.
193

Chapter 2

194
Notes The List object by default does not delete the
objects it contains in its list. If you call this
method with the LIST_DELETE_ON_
DESTRUCTOR parameter, then the List object
deletes the objects it contains. When in this
mode of operation, the List object deletes the
objects when you use any of its delete
methods to remove an object from the list. It
also deletes all objects in its list when the list
object itself is deleted.

Using this functionality, you can allocate and
organize a large number of objects. These
objects can be organized by using List objects
that contain other List objects (and so on) that
contain other objects. If the mode of all of
these List objects is set to LIST_DELETE_ON_
DESTRUCTOR, then all memory for all List
objects and all the objects that they contain is
released to the system by deleting the top List
object.

Do not delete an object contained in a List
object directly if the mode of the List object is
set to LIST_DELETE_ON_DESTRUCTOR.
This is because the List object tries to delete it
again when you delete the List object. If you
want to delete an object contained in a list, use
one of the list’s delete methods. Also, do not
have the same object contained in more than
one List object if the mode of the List object is
set to LIST_DELETE_ON_DESTRUCTOR.

The Blob Analysis tool uses this functionality
to track all of its blobs and all of their
descendants. Refer to Chapter 6 starting on
page 307 for more information on the Blob
Analysis tool.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Return Values

−1 Unsuccessful.

0 Successful.
195

Chapter 2

196
Calibration Objects
Calibration objects convert pixel coordinates to real-world
coordinates and pixel areas to real-world areas. Tools use Calibration
objects to measure items in images in real-world coordinates. Before a
Calibration object can convert pixel coordinates to real-world
coordinates, the Calibration object needs to be calibrated. Once
calibrated, Calibration objects can save themselves to disk.

The methods for the Calibration objects, grouped by method type, are
as follows:

• Constructor and destructor methods − Standard methods.

• Calibration method − This method calibrates the Calibration
object. A Calibration object must be calibrated before it can be
used to convert pixel coordinates to real-world coordinates.

• Conversion methods − These methods convert pixel coordinates
to real-world coordinates and areas.

• Save and restore methods − These methods save and restore a
Calibration object to and from disk.

• General methods − These methods are general calibration
methods.

Table 12 briefly summarizes the methods for the Calibration object.

Table 12: Calibration Object Methods

Method Type Method Name Method Description

Constructor &
Destructor
Methods

CcCalibration() Constructor.

CcCalibration() Destructor.

Calibration
Method

DoCalibration() Calibrates the Calibration object.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Constructor and Destructor Methods

This section describes the constructor and destructor for the
Calibration object.

CcCalibration() and ~ CcCalibration()

Conversion
Methods

ConvertPoint() Converts a given point in pixels to
real-world coordinates.

GetAreaOfPixel() Converts a given point in pixels to a
real-world area measurement.

Save and
Restore
Methods

Save() Saves the Calibration object’s
calibration.

Open() Restores a Calibration object’s
calibration.

General
Methods

SetUnitsOfMeasure() Sets the unit of measure used to
calibrate the Calibration object.

GetUnitsOfMeasure() Returns the unit of measure used to
calibrate the Calibration object.

GetSizeOfImage() Returns the size of the image used to
calibrate the Calibration object.

Syntax CcCalibration* CCal =
new CcCalibration();

Delete CCal;

Include File C_Calibr.h, if using a calibration class.

Description The standard constructor and destructor for
the object.

Table 12: Calibration Object Methods (cont.)

Method Type Method Name Method Description
197

Chapter 2

198
Calibration Method

This method calibrates the Calibration object. A Calibration object
must be calibrated before it can be used to convert pixel coordinates
to real-world coordinates. A Calibration object is calibrated using
four pairs of known image points and real-world points. This section
describes the calibration methods in detail.

DoCalibration

Syntax int DoCalibration(
 STPOINTS* stImagePoints,
 STPOINTS* stWorldPoints,
 int iNumberOfPoints,
 int iWidthOfImage,
 int iHeightOfImage);

Include File C_Calibr.h

Description Calibrates the Calibration object using the
given image and real-world coordinates.

Parameters

Name:

Description:

stImagePoints

Array of four image points given in subpixel
locations.

Name:

Description:

stWorldPoints

Array of four real world points.

Name:

Description:

iNumberOfPoints

The number of points in the array; this value
must be 4.

Name:

Description:

iWidthOfImage

The width of the image you are calibrating.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Conversion Methods

These methods convert pixel coordinates to real-world coordinates
and areas. Subpixel accuracy is used to perform all calculations.

ConvertPoint

Name:

Description:

iHeightOfImage

The height of the image you are calibrating.

Notes You can use the Calibration object to calibrate
and save a Calibration object. Then, open the
saved Calibration object from disk using the
method Open() to restore the calibration.

This method takes exactly four pairs of pixels
and the associated real-world coordinates.
The pixel points can be subpixel points to
increase your accuracy

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ConvertPoint(
 STPOINTS* stImagePoint,
 STPOINTS* stWorldPoint);

or

int ConvertPoint(
 float fImageX,
 float fImageY,
 float* fWorldX,
 float* fWorldY);

Include File C_Calibr.h
199

Chapter 2

200
Description Converts the given pixel point to a real-world
coordinate.

Parameters

Name:

Description:

stImagePoint

Pointer to a STPOINTS structure that contains
the given subpixel pixel point to convert to
real-world coordinates.

Name:

Description:

stWorldPoint

Pointer to a STPOINTS structure that receives
the real-world coordinates.

Name:

Description:

fImageX

Subpixel x-pixel point to convert to real-world
coordinates.

Name:

Description:

fImageY

Subpixel y-pixel point to convert to real-world
coordinates.

Name:

Description:

fWorldX

Pointer to a float variable that receives the real
world x-coordinate.

Name:

Description:

fWorldY

Pointer to a float variable that receives the
real-world y-coordinate.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetAreaOfPixel

Notes Two versions of this method are provided.
Each performs the same operation. The first
version takes the pixel points in the form of a
STPOINTS structure; the second version
enters each value in a float variable. Use the
version that is more convenient for you. The
STPOINTS structure is described as follows:

struct STPOINTS {
 float fX,fY;
 };

Return Values

−1 Unsuccessful.

0 Successful.

Syntax float GetAreaOfPixel(
 int ix,
 int iy);

Include File C_Calibr.h

Description Returns the real-world calibrated area for the
given pixel location.

Parameters

Name:

Description:

ix

The x-location of pixel for desired area.

Name:

Description:

iy

The y-location of pixel for desired area.
201

Chapter 2

202
Save and Restore Methods

The Save method saves a Calibration object to disk. The Open
method restores a Calibration object from disk. This section describes
these methods in detail.

Save

Open

Return Values

−1 Unsuccessful.

The calibrated area for the
given pixel location.

Successful.

Syntax int Save(char* cFileName);

Include File C_Calibr.h

Description Saves the Calibration object’s calibration to
disk.

Parameters

Name:

Description:

cFileName

Full path name of file in which to save the
calibration information.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int Open(char* cFileName);

Include File C_Calibr.h

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

General Methods

This section describes the general calibration methods in detail.

SetUnitsOfMeasure

Description Restores the Calibration object’s calibration
information from disk.

Parameters

Name:

Description:

cFileName

Full path name of file from which to restore
the calibration information.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetUnitsOfMeasure(
char* cNewUnitsOfMeasure);

Include File C_Calibr.h

Description Sets the units of measure for the Calibration
object.

Parameters

Name:

Description:

cNewUnitsOfMeasure

Text-based description of the units of measure
used to calibrate the object.
203

Chapter 2

204
GetUnitsOfMeasure

Notes The units of measure can be anything you
wish and are not used in calculations. These
units provide a textual description of
measurement that is used to calibrate the
object.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax char* GetUnitsOfMeasure(void);

Include File C_Calibr.h

Description Gets the units of measure for the Calibration
object.

Notes The units of measure can be anything you
wish and are not used in calculations. The
units are a textual description of the
measurement that is used to calibrate the
object.

Return Values

NULL Unsuccessful.

The textual-based description
of the units of measure used to

calibrate the object.

Successful.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetSizeOfImage

Syntax int GetSizeOfImage(
 int* iWidthOfImage,
 int* iHeightOfImage);

Include File C_Calibr.h

Description Returns the size of the image that is used to
calibrate the object.

Parameters

Name:

Description:

iWidthOfImage

Pointer to an integer that receives the image’s
width, which is used to calibrate the object.

Name:

Description:

iHeightOfImage

Pointer to an integer that receives the image’s
height, which is used to calibrate the object.

Notes Each Calibration object is calibrated using an
input image. You can then use this Calibration
object on all images taken with the same
camera setup. This method is provided so that
you can check the size of the original image
that is used to calibrate the object.

Return Values

−1 Unsuccessful.

0 Successful.
205

Chapter 2

206
Device Manager Objects
A Device Manager object is derived from a single C++ class
(CcDeviceManager).

Note: Currently, the Device Manager supports imaging and digital
I/O devices only. The API for the Device Manager is intended to be
used with the APIs for the Picture tool, described in Chapter 20
starting on page 699, and the Digital I/O tool, described in Chapter
10 starting on page 463.

The methods for the Device Manager class, grouped by method type,
are summarized in Table 13.

Table 13: Device Manager Object Methods

Method Type Method Name Method Description

Constructor &
Destructor
Methods

CcDeviceManager() Constructor.

CcDeviceManager() Destructor.

Initialize and
Uninitialize
Methods

Initialize() Prepares the Device Manager for use.

Uninitialize() Prepares the Device Manager for
termination.

Information
Methods

GetPluginNames() Returns the names of all plugins for
imaging or digital I/O devices.

GetDeviceNames() Returns the names of all devices for a
specified plugin.

GetDeviceObject() Returns the device object that is
identified by the plugin name, device
name, and device interface.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Information
Methods
(cont.)

GetErrorText() Returns the description of the last
error that occurred.

Save and
Load Methods

SaveDeviceManagerState() Saves the current state of all devices
in the Device Manager to the named
file.

LoadDeviceManagerState() Loads Device Manager settings from
a file and applies them to the devices
in the Device Manager.

Table 13: Device Manager Object Methods (cont.)

Method Type Method Name Method Description
207

Chapter 2

208
Constructor and Destructor Methods

This section describes the constructor and destructor for the Device
Manager object.

CcDeviceManager() and ~ CcDeviceManager ()

Initialize and Uninitialze Methods

This section describes the methods that are used to prepare the
Device Manager for use and for termination.

Initialize

Syntax CcDeviceManager
~CcDeviceManager

Include File C_DeviceManager.h

Description The standard constructor and destructor for
the object.

Syntax int Initialize (
HWnd hWnd);

Include File C_DeviceManager.h

Description Prepares the Device Manager for use.

Parameters

Name:

Description:

hWnd

The handle to the window that receives
initialization status messages. This value must
be a valid window handle or NULL if the
application does not wish to process status
messages.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Notes Call this method once (preferably when the
application is initialized) before calling any
other Device Manager methods.

When the initialization process begins, the
Device Manager sends the message
DEVMGR_INIT_BEGIN to the window
identified by hWnd. The least significant word
of the long parameter (LPARAM) of this
message contains the number of devices to
initialize. The Device Manager then sends the
message DEVMGR_INIT_UPDATE to the
window for each device, as it is initialized.
Once all devices have been initialized, the
Device Manager sends the message
DEVMGR_INIT_DONE.

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Error text buffer.
TCHAR szText[500];

//Initialize the Device Manager.
//Ignore initialization status
//messages.
if (DevMan.Initialize(NULL)) < 0)
{

//Get error text.
DevMan.GetErrorText(szText,
500);

}

209

Chapter 2

210
Uninitialize

Information Methods

This section describes the methods that are used to return
information for use by the Device Manager.

Syntax int Uninitialize ();

Include File C_DeviceManager.h

Description Prepares the Device Manager for termination.

Parameters None

Notes Call this method once before the application
terminates.

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Error text buffer.
TCHAR szText[500];

//Uninitialize the Device Manager.
if (DevMan.Uninitialize()) < 0)
{

//Get error text.
DevMan.GetErrorText(szText,
500);

}

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetPluginNames

Syntax int GetPluginNames (
int nDeviceType,
CcStringList pPluginNames);

Include File C_DeviceManager.h

Description Returns the names of all plugins that provide
devices with the identified type of device
interface.

Parameters

Name:

Description:

nDeviceType

Specifies the device interface to query. This
value must be DEVINTF_IMAGEDEVICE (for
imaging devices), DEVINTF_DIGIODEVICE
(for digital I/O devices), or DEVINTF_ALL
(for both imaging and digital I/O devices).

Name:

Description:

pPluginNames

A pointer to a string list object that receives
the plugin names. (The existing contents of
the supplied list are destroyed.) This value
must not be NULL.

Notes A plugin is a module that manages one or
multiple imaging and/or digital I/O devices.
It is the primary means by which specific
imaging and digital I/O devices are added to
the Device Manager.

Only the names of the plugins that support
the device interface specified by nDeviceType
are returned by this method.
211

Chapter 2

212
GetDeviceNames

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//List to receive names.
CcStringList Names;
//Error text buffer.
TCHAR szText[500];
//Get the names of all plugins
//with devices that support the
//imaging interface.
if (DevMan.GetPluginNames(

DEVINTF_IMAGEDEVICE, &Names)) <
0)

{
//Get error text.
DevMan.GetErrorText(szText,
500);

}

Syntax int GetDeviceNames (
LPSTR szPluginName,
int nDeviceType,
CcStringList pDeviceNames);

Include File C_DeviceManager.h

Description Returns the names of all devices for the
named plugin that support the specified
device interface (imaging and/or digital I/O).

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Parameters

Name:

Description:

szPluginName

Specifies the name of the plugin to query. This
value must not be NULL.

Name:

Description:

nDeviceType

Specifies the device interface to query. This
value must be DEVINTF_IMAGEDEVICE (for
imaging devices), DEVINTF_DIGIODEVICE
(for digital I/O devices), or DEVINTF_ALL
(for both imaging and digital I/O devices).

Name:

Description:

pDeviceNames

A pointer to a string list object that receives
the device names. (The existing contents of the
supplied list are destroyed.) This value must
not be NULL.

Notes You can obtain a list of the plugins that are
provided by the Device Manager using the
GetPluginNames method, described on page
211.

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//List to receive names.
CcStringList Names;
//Error text buffer.
TCHAR szText[500];
213

Chapter 2

214
GetDeviceObject

Example (cont.) TCHAR szPluginName[] = "DT-MACH/MV
PCI Frame Grabbers";

//Get the names of all devices for
//the plugin named "DT-MACH/MV PCI
//Frame Grabbers" that provide an
//imaging device interface.
if (DevMan.GetDeviceNames(

szPluginName,
DEVINTF_IMAGEDEVICE, &Names)) <
0)

{
//Get error text.
DevMan.GetErrorText(szText,
500);

}

Syntax int GetDeviceObject (
LPSTR szPluginName,
LPSTR szDeviceName,
int nDeviceType,
void **ppObject);

Include File C_DeviceManager.h

Description Returns the device object that is identified by
the plugin name, device name, and device
interface.

Parameters

Name:

Description:

szPluginName

Specifies the name of the plugin that supports
the target device. This value must not be
NULL.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

Name:

Description:

szDeviceName

Specifies the name of the target device. This
value must not be NULL.

Name:

Description:

nDeviceType

Specifies the device interface to return on the
target device. This value must be
DEVINTF_IMAGEDEVICE (for imaging
devices) or DEVINTF_DIGIODEVICE (for
digital I/O devices).

Name:

Description:

ppObject

A pointer to a pointer that receives the
requested device object. This value must not
be NULL.

Notes A device object is the primary means through
which an application manipulates a device
(such as acquiring an image, reading and
writing the state of digital I/O lines, and so
on).

The object returned by this method is
managed internally by the Device Manager
and must not be deleted by the application.

The type of object returned depends on the
value of nDeviceType. If an imaging interface is
requested (DEVINTF_IMAGEDEVICE), a
pointer to an object of type CcImageDevice is
returned. If a digital I/O interface is requested
(DEVINTF_DIGIODEVICE), a pointer to an
object of type CcDigIODevice is returned. If
the requested device interface is not
supported, this method returns an error.
215

Chapter 2

216
Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Pointer to receive object.
CcImageDevice *pDevice;
//Error text buffer.
TCHAR szText[500];
//Set up plugin and device names
TCHAR szPluginName[] = "DT-MACH/MV

PCI Frame Grabbers";
TCHAR szDeviceName[] = "DT3162-1";
//Get a reference to the
//"DT3162-1" device for the plugin
//named "DT-MACH/MV PCI Frame
//Grabbers".
if (DevMan.GetDeviceObject(

szPluginName, szDeviceName,
DEVINTF_IMAGEDEVICE, (void **)
&pDevice)) < 0)

{
//Get error text.
DevMan.GetErrorText(szText,
500);

}
//pDevice now contains a pointer
//to the device object that
//represents the DT3162. This
//object is managed internally by
//the Device Manager and must not
//be deleted by the application.

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

GetErrorText

Syntax int GetErrorText (
LPSTR szErrorText,
int nBufSize);

Include File C_DeviceManager.h

Description Returns a description of the last error that
occurred.

Parameters

Name:

Description:

szErrorText

Specifies a buffer to receive the last error text.
This value must not be NULL.

Name:

Description:

nBufSize

Specifies the size of the supplied character
buffer.

Notes None

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Error text buffer.
TCHAR szText[500];

//Get error text.
DevMan.GetErrorText(szText, 500);
217

Chapter 2

218
Save and Load Methods

This section describes the methods that are used to save Device
Manager settings and load Device Manager settings.

SaveDeviceManagerState

Syntax int SaveDeviceManagerState(
LPSTR szFileName);

Include File C_DeviceManager.h

Description Saves the current state of all devices in the
Device Manager to the named file.

Parameters

Name:

Description:

szFileName

Specifies the name of the file in which the
state of the Device Manager is persisted. This
value must not be NULL.

Notes None

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Error text buffer.
TCHAR szText[500];
//Save the state of the Device
//Manager to the file named
//"Settings.dm".

Using the DT Vision Foundry API

2

2

2

2

2

2

2

2

2

LoadDeviceManagerState

Example (cont.) if (DevMan.SaveDeviceManagerState
("Settings.dm") < 0)

{
//Get error text.
DevMan.GetErrorText(szText,
500);

}

Syntax int LoadDeviceManagerState(
LPSTR szFileName);

Include File C_DeviceManager.h

Description Loads the settings from the specified file and
applies them to the devices in the Device
Manager.

Parameters

Name:

Description:

szFileName

Specifies the name of the file from which the
state of the Device Manager is loaded. This
value must not be NULL.

Notes None

Return Values

< 0 The operation failed.

0 The operation was successful.

Example The following is a sample code fragment:

//Device Manager object.
CcDeviceManager DevMan;
//Error text buffer.
TCHAR szText[500];
219

Chapter 2

220
Example (cont.) //Load the state of the Device
//Manager from the file named
//"Settings.dm".
if (DevMan.LoadDeviceManagerState

("Settings.dm") < 0)
{

//Get error text.
DevMan.GetErrorText(szText,
500);

}

3
Using the Arithmetic Tool API

Overview of the Arithmetic Tool API . 222

CcArithmetic Methods . 225
221

Chapter 3

222
Overview of the Arithmetic Tool API
The API for the Arithmetic tool has one object only: the CcArithmetic
class. This tool performs an arithmetic operation on one or more
images (derived from class CcImage), and places the result into an
output image. It performs this operation with respect to the given
ROI (derived from class CcRoiBase).

The CcArithmetic class uses a standard constructor and destructor
and the class methods listed in Table 14.

Table 14: CcArithmetic Class Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcArithmetic(void);

~CcArithmetic(void);

CcArithmetic
Class Methods

int Add(CcImage* CImageIn1,CcImage* CImageIn2,
 CcImage* CImageOut,CcRoiBase* Croi,int iFlag,
 float fGain, float fOffset,float fLowThreshold,
 float fHiThreshold);

int AddRGB(Cc24BitRGBImage* CImageIn1,
 Cc24BitRGBImage* CImageIn2,
 Cc24BitRGBImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int AddHSL(Cc24BitHSLImage* CImageIn1,
 Cc24BitHSLImage* CImageIn2,
 Cc24BitHSLImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int Sub(CcImage* CImageIn1, CcImage* CImageIn2,
 CcImage* CImageOut,CcRoiBase* CRoi,int iFlag,
 float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

CcArithmetic
Class Methods
(cont.)

int SubRGB(Cc24BitRGBImage* CImageIn1,
 Cc24BitRGBImage* CImageIn2,
 Cc24BitRGBImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int SubHSL(Cc24BitHSLImage* CImageIn1,
 Cc24BitHSLImage* CImageIn2,
 Cc24BitHSLImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int Mul(CcImage* CImageIn1,CcImage* CImageIn2,
 CcImage* CImageOut,CcRoiBase* CRoi,int iFlag,
 float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int MulRGB(Cc24BitRGBImage* CImageIn1,
 Cc24BitRGBImage* CImageIn2,
 Cc24BitRGBImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int MulHSL(Cc24BitHSLImage* CImageIn1,
 Cc24BitHSLImage* CImageIn2,
 Cc24BitHSLImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int Div(CcImage* CImageIn1,
 CcImage* CImageIn2,CcImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int DivRGB(Cc24BitRGBImage* CImageIn1,
 Cc24BitRGBImage* CImageIn2,
 Cc24BitRGBImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

Table 14: CcArithmetic Class Methods (cont.)

Method Type Method Name
223

Chapter 3

224
CcArithmetic
Class Methods
(cont.)

int DivHSL(Cc24BitHSLImage* CImageIn1,
 Cc24BitHSLImage* CImageIn2,
 Cc24BitHSLImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int LogicalAND(CcImage* CImageIn1,
 CcImage* CImageIn2,CcImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int LogicalOR (CcImage* CImageIn1,
 CcImage* CImageIn2,CcImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int LogicalXOR(CcImage* CImageIn1,
 CcImage* CImageIn2,CcImage* CImageOut,
 CcRoiBase* CRoi,int iFlag,float fGain,float fOffset,
 float fLowThreshold,float fHiThreshold);

int Copy(CcImage* CImageIn1,
 CcImage* CImageOut,CcRoiBase* CRoi,int iFlag,
 float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int CopyRGB(Cc24BitRGBImage* CImageIn1,
 Cc24BitRGBImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

int CopyHSL(Cc24BitHSLImage* CImageIn1,
 Cc24BitHSLImage* CImageOut,CcRoiBase* CRoi,
 int iFlag,float fGain,float fOffset,float fLowThreshold,
 float fHiThreshold);

Table 14: CcArithmetic Class Methods (cont.)

Method Type Method Name

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

CcArithmetic Methods
This section describes each method of the CcArithmetic class in
detail.

Add/AddRGB/AddHSL

Syntax int Add(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following arithmetic operation
with respect to the given ROI (CRoi):

CImageOut = fGain*(CImageIn1
+ CImageIn2) + fOffset

CImageOut = |CImageOut|
//Threshold CImageOut so that:
fLowThreshold <= CImageOut <=

fHiThreshold

This method adds two input images together
with respect to the given ROI and takes the
absolute value of the resulting data, if it is
specified in the iFlag parameter. It then
performs thresholding on the resulting data, if
it is specified in the iFlag parameter.
225

Chapter 3

226
Description (cont.) The order of operations for this method is as
follows:

1. Adds two images together.

2. Applies gain and offset.

3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data between fLowThreshold and
fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes AddRGB() and AddHSL() are identical to
Add(), except that they perform the operation
on all three color planes at once.
227

Chapter 3

228
Notes (cont.) These methods use images derived from the
CcImage class. These include 8-bit grayscale,
32-bit grayscale, floating-point grayscale, and
24-bit color images. These methods use an
ROI derived from the CcRoiBase class. These
include all DT Vision Foundry ROIs. They
also work with your own images or ROIs
derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
Cc24BitRGBImage*CColorImage;
//24-bit Color Image
CcGrayImage256*C8BitImage;
//8-bit grayscale Image
CcGrayImageInt32*C32BitImage;
//32-bit grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
 CColorImage = new

Cc24BitRGBImage();
 C8BitImage=new CcGrayImage256();
 C32BitImage = new

CcGrayImageInt32();
 CRectRoi = new CcRoiRect();

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example (cont.) //Initialize ROI
 RECT stROI;
 stROI.bottom = 50;
 stROI.top = 150;
 stROI.left = 50;
 stROI.right = 150;
 CRectRoi->

SetRoiImageCord((VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
CColorImage->OpenBMPFile(

“image1.bmp”);
C8BitImage->OpenBMPFile(

“image2.bmp”);
C32BitImage->OpenBMPFile(

“image3.bmp”);
//Perform addition Image3 =
//Image1 + Image2.
 CArith.Add(CColorImage,

C8BitImage, C32BitImage,
CRectRoi, ARITH_ABS_VALUE |
ARITH_THRESHOLD,

//Perform Absolute Value and
//Thresholding

1, //Set gain to 1
0, //Set offset to 0
0, //Threshold between 0 and

//255
255);

//Save output to disk
C32BitImage->SaveBMPFile(

“output.bmp”);
229

Chapter 3

230
Sub/SubRGB/SubHSL

Example (cont.) //Free memory
delete CColorImage;
delete C8BitImage;
delete C32BitImage;
delete CRectRoi;
}

Syntax int Sub(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following arithmetic operation
with respect to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1 -
CImageIn2) + fOffset.

CImageOut = |CImageOut|.
//Threshold CImageOut so that:
fLowThreshold <= CImageOut <=

fHiThreshold.

The method subtracts input image 2 from
input image 1 with respect to the given ROI. It
takes the absolute value of the resulting data,
if it was specified in the iFlag parameter. It
also performs thresholding on the resulting
data, if it was specified in the iFlag parameter.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Description (cont.) The order of operations for this method is as
follows:

1. Subtracts the two images.

2. Applies gain and offset.

3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.
231

Chapter 3

232
Description (cont.): • ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes SubRGB() and SubHSL() are identical to
Sub(), except that they perform the operation
on all three color planes at once.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, and 24-bit color
images. This method uses an ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
Cc24BitRGBImage*CColorImage;
//24-bit Color Image
CcGrayImage256*C8BitImage;
//8-bit grayscale Image
CcGrayImageInt32*C32BitImage;
//32-bit grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
CColorImage=
 new Cc24BitRGBImage();
C8BitImage=new CcGrayImage256();
C32BitImage =
 new CcGrayImageInt32();
CRectRoi = new CcRoiRect();
//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord(

(VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
 CColorImage->OpenBMPFile(

“image1.bmp”);
233

Chapter 3

234
Example (cont.) C8BitImage->OpenBMPFile(
“image2.bmp”);

C32BitImage->OpenBMPFile(
“image3.bmp”);

//Perform subtraction Image3 =
//Image1 - Image2.
CArith.Sub(CColorImage,

C8BitImage, C32BitImage,
CRectRoi, ARITH_THRESHOLD,

//Perform Thresholding only
1, //Set gain to 1
0, //Set offset to 0
0, //Threshold between 0 and

//255
255);

//Save output to disk
C32BitImage->SaveBMPFile(

“output.bmp”);

//Free memory
delete CColorImage;
delete C8BitImage;
delete C32BitImage;
delete CRectRoi;
}

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Mul/MulRGB/MulHSL

Syntax int Mul(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following arithmetic operation
with respect to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1 *
CImageIn2) + fOffset

CImageOut = |CImageOut|
//Threshold CImageOut so that:
fLowThreshold <= CImageOut <=

fHiThreshold

This method multiplies input image 1 with
input image 2 with respect to the given ROI. It
takes the absolute value of the resulting data,
if it was specified in the iFlag parameter. It
also performs thresholding on the resulting
data, if it was specified in the iFlag parameter.

The order of operations for this method is as
follows:

1. Multiplies the two images.

2. Applies gain and offset.
235

Chapter 3

236
Description (cont.) 3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD −Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes MulRGB() and MulHSL() are identical to
Mul(), except that they perform the operation
on all three color planes at once.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, and 24-bit color
images. This method uses an ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
CcGrayImage256*C8BitImage2;
//8-Bit grayscale Image 2
237

Chapter 3

238
Example (cont.) CcGrayImageInt32*C32BitImage;
//32-Bit grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
 C8BitImage1=

new CcGrayImage256();
 C8BitImage2=

 new CcGrayImage256();
 C32BitImage=

 new CcGrayImageInt32();
 CRectRoi= new CcRoiRect();

//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord(

(VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
C8BitImage1->OpenBMPFile(

“image1.bmp”);
C8BitImage2->OpenBMPFile(

“image2.bmp”);
 C32BitImage->OpenBMPFile(

“image3.bmp”);

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example (cont.) //Perform multiplication Image3 =
//Image1 X Image2. Take two 8-bit
//images, multiply them, and place
//result into a 32-bit image so
//that no precision is lost.

CArith.Mul(C8BitImage1,
C8BitImage2, C32BitImage,
CRectRoi,
0,//Do not threshold or take

//absolute value
1, //Set gain to 1
0, //Set offset to 0
0, //Threshold values unused
0);

//Save output to disk
C32BitImage->SaveBMPFile(

“output.bmp”);
//Free memory
delete C8BitImage1;
delete C8BitImage2;
delete C32BitImage;
delete CRectRoi;
}

239

Chapter 3

240
Div/DivRGB/DivHSL

Syntax int Div(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 cRoiBase* cRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following arithmetic operation
with respect to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1 /
CImageIn2) + fOffset.

CImageOut = |CImageOut|.
//Threshold CImageOut so that:
 fLowThreshold <= CImageOut <=

fHiThreshold.

Divides input image 1 by input image 2 with
respect to the given ROI. It takes the absolute
value of the resulting data, if it was specified
in the iFlag parameter. It also performs
thresholding on the resulting data, if it was
specified in the iFlag parameter.

The order of operations for this method is as
follows:

1. Divides the two images.

2. Applies gain and offset.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Description (cont): 3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and
 fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.
241

Chapter 3

242
Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes DivRGB() and DivHSL() are identical to
Div(), except that it performs the operation
on all three color planes at once.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, and 24-bit color
images. This method uses an ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
CcGrayImage256*C8BitImage2;
//8-Bit grayscale Image 2
CcGrayImageFloat*CFloatImage;
//Floating-point grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/
//Allocate memory for objects
 C8BitImage1=

new CcGrayImage256();
 C8BitImage2=

new CcGrayImage256();
 CFloatImage=

new CcGrayImageFloat();
CRectRoi= new CcRoiRect();
//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord(

(VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
 C8BitImage1->OpenBMPFile(

“image1.bmp”);
243

Chapter 3

244
Example (cont.) C8BitImage2->OpenBMPFile(
“image2.bmp”);

 CFloatImage->OpenBMPFile(
“image3.bmp”);

//Perform Division Image3
//= Image1 / Image2.
//Take two 8-bit images, divide
//them, and place result into a
//floating-point image so that you
//do not loose any precision.
CArith.Div(C8BitImage1,

C8BitImage2, CFloatImage,
CRectRoi,ARITH_ABS_VALUE,

//Do not threshold but take
//absolute value

1, //Set gain to 1
0, //Set offset to 0
0, //Threshold values unused
0);

//Save output to disk
 CFloatImage->SaveBMPFile(

“output.bmp”);
//Free memory
delete C8BitImage1;
delete C8BitImage2;
delete CFloatImage;
delete CRectRoi;
}

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

LogicalAnd

Syntax int LogicalAND(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following operation with respect
to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1 &
CImageIn2) + fOffset.

CImageOut = |CImageOut|.
//Threshold CImageOut so that:
fLowThreshold <= CImageOut <=

fHiThreshold.

This method performs a logical bitwise AND
with input image 1 and input image 2 with
respect to the given ROI. It takes the absolute
value of the resulting data, if it was specified
in the iFlag parameter. It also performs
thresholding on the resulting data, if it was
specified in the iFlag parameter.

The order of operations for this method is as
follows:

1. Bitwise ANDs the two images (as 32-bit
 integers).

2. Applies gain and offset.
245

Chapter 3

246
Description (cont.) 3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies extra actions to take. The following
values can be combined using the bitwise OR
operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes All values are converted to 32-bit integers
before performing the logical bitwise AND
operation.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
color images. This method uses a ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful
247

Chapter 3

248
Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
CcGrayImage256*C8BitImage2;
//8-Bit grayscale Image 2
CcGrayImageFloat*CFloatImage;
//Floating-point grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
/*End of Dec Section*/
//Allocate memory for objects
 C8BitImage1 =

new CcGrayImage256();
 C8BitImage2 =

new CcGrayImage256();
 CFloatImage =

new CcGrayImageFloat();
 CRectRoi = new CcRoiRect();
//Initialize ROI
 RECT stROI;
 stROI.bottom = 50;
 stROI.top = 150;
 stROI.left = 50;
 stROI.right = 150;
 CRectRoi->

SetRoiImageCord((VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
 C8BitImage1->OpenBMPFile(

“image1.bmp”);

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example (cont.) C8BitImage2->OpenBMPFile(
“image2.bmp”);

 CFloatImage->OpenBMPFile(
“image3.bmp”);

//Perform bitwise AND;
//Image3 = Image1 AND Image2.
CArith.LogicalAND(C8BitImage1,

C8BitImage2, CFloatImage,
CRectRoi,ARITH_ABS_VALUE,

//Do not threshold but take
//absolute value

1, //Set gain to 1
0, //Set offset to 0
0, //Threshold values unused
0);

//Save output to disk
 CFloatImage->SaveBMPFile

(“output.bmp”);
//Free memory
delete C8BitImage1;
delete C8BitImage2;
delete CFloatImage;
delete CRectRoi;
}

249

Chapter 3

250
LogicalOR

Syntax int LogicalOR(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following operation with respect
to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1
 | CImageIn2) + fOffset

CImageOut = |CImageOut|
//Threshold CImageOut so that:

fLowThreshold <= CImageOut <=
fHiThreshold

This method performs a logical bitwise OR
operation with input image 1 and input image
2 with respect to the given ROI. It takes the
absolute value of the resulting data, if it was
specified in the iFlag parameter. It also
performs thresholding on the resulting data, if
it was specified in the iFlag parameter.

The order of operations for this method is as
follows:

1. Bitwise ORs the two images (as 32-bit
 integers).

2. Applies gain and offset.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Description (cont.) 3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.
251

Chapter 3

252
Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes All values are converted to 32-bit integers
before performing a logical bitwise OR
operation.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
color images. This method uses a ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
CcGrayImage256*C8BitImage2;
//8-Bit grayscale Image 2
CcGrayImageFloat*CFloatImage;
//Floating point grayscale Image
CcRoiRect* CRectRoi;
//Where operation will take place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
 C8BitImage1 =

new CcGrayImage256();
 C8BitImage2 =

new CcGrayImage256();
 CFloatImage =

new CcGrayImageFloat();
 CRectRoi = new CcRoiRect();

//Initialize ROI
 RECT stROI;
 stROI.bottom = 50;
stROI.top = 150;

 stROI.left = 50;
stROI.right = 150;

 CRectRoi->SetRoiImageCord(
(VOID*)&stROI);
253

Chapter 3

254
Example (cont.) //Open images from disk (or get
//image data from frame grabber)
 C8BitImage1->OpenBMPFile(

“image1.bmp”);
 C8BitImage2->OpenBMPFile(

“image2.bmp”);
 CFloatImage->OpenBMPFile(

“image3.bmp”);
//Perform bitwise OR; Image3 =
//Image1 OR Image2.
CArith.LogicalOR(C8BitImage1,

C8BitImage2,CFloatImage,
CRectRoi,
0,//Do not threshold or
//absolute value
1,//Set gain to 1
0,//Set offset to 0
0,//Threshold values unused
0);

//Save output to disk
CFloatImage->SaveBMPFile

(“output.bmp”);
//Free memory
delete C8BitImage1;
delete C8BitImage2;
delete CFloatImage;
delete CRectRoi;
}

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

LogicalXOR

Syntax int LogicalXOR(
 CcImage* CImageIn1,
 CcImage* CImageIn2,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h

Description Performs the following operation with respect
to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1 ^
CImageIn2) + fOffset.

CImageOut = |CImageOut|.
//Threshold CImageOut so that:

fLowThreshold <= CImageOut <=
fHiThreshold.

Performs a logical bitwise exclusive-OR with
input image 1 and input image 2 with respect
to the given ROI. It takes the absolute value of
the resulting data, if it was specified in the
iFlag parameter. It also performs thresholding
on the resulting data, if it was specified in the
iFlag parameter.

The order of operations for this method is as
follows:

1. Bitwise XORs the two images (as 32-bit
 integers).

2. Applies gain and offset.
255

Chapter 3

256
Description (cont.) 3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and
 fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageIn2

Image derived from class CcImage and used
as image input 2 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is used unless
it was specified by ARITH_THRESHOLD.

Notes All values are converted to 32-bit integers
before performing a logical bitwise XOR
operation.

This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
color images. This method uses a ROI derived
from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
257

Chapter 3

258
Example (cont.) CcGrayImage256*C8BitImage2;
//8-Bit grayscale Image 2
CcGrayImageFloat*CFloatImage;
//Floating point grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
C8BitImage1 =

new CcGrayImage256();
C8BitImage2 =

new CcGrayImage256();
CFloatImage =

new CcGrayImageFloat();
CRectRoi =

new CcRoiRect();

//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord(

(VOID*)&stROI);
//Open images from disk (or get
//image data from frame grabber)
C8BitImage1->OpenBMPFile(

“image1.bmp”);
C8BitImage2->OpenBMPFile(

“image2.bmp”);
 CFloatImage->OpenBMPFile(

“image3.bmp”);

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Copy/CopyRGB/CopyHSL

Example (cont.) //Perform bitwise XOR; Image3 =
//Image1 XOR Image2.
CArith.LogicalXOR(C8BitImage1,

C8BitImage2, CFloatImage,
CRectRoi,0,

//Do not threshold or absolute
//value

1, //Set gain to 1
0, //Set offset to 0
0, //Threshold values unused
0);

//Save output to disk
 CFloatImage->SaveBMPFile(

“output.bmp”);
 //Free memory
delete C8BitImage1;
delete C8BitImage2;
delete CFloatImage;
delete CRectRoi;
}

Syntax int Copy(
 CcImage* CImageIn1,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 int iFlag,
 float fGain,
 float fOffset,
 float fLowThreshold,
 float fHiThreshold);

Include Files C_Arith.h
259

Chapter 3

260
Description Performs the following operation with respect
to the given ROI (CRoi):

CImageOut = fGain * (CImageIn1) +
fOffset

CImageOut = |CImageOut|
Threshold CImageOut so that:

fLowThreshold <= CImageOut <=
fHiThreshold

This method copies input image 1 into the
output image with respect to the given ROI. It
takes the absolute value of the resulting data,
if it was specified in the iFlag parameter. It
also performs thresholding on the resulting
data, if it was specified in the iFlag parameter.

The order of operations for this method is as
follows:

1. Copies the input image to the output
image.

2. Applies gain and offset.

3. If specified, takes the absolute value of the
resulting data.

4. If specified, thresholds the resulting data
to between fLowThreshold and fHiThreshold.

Parameters

Name:

Description:

CImageIn1

Image derived from class CcImage and used
as image input 1 in the equation.

Name:

Description:

CImageOut

Image derived from class CcImage and used
as the output image.

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iFlag

Specifies the extra actions to take. The
following values can be combined using the
bitwise OR operator:

• ARITH_ABS_VALUE − Takes the absolute
value of the resulting data.

• ARITH_THRESHOLD − Thresholds the
resulting data to between fLowThreshold
and fHiThreshold.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Name:

Description:

fHiThreshold

High threshold limit; this value is not used
unless it was specified by
ARITH_THRESHOLD.

Notes CopyRGB() and CopyHSL() are identical to
Copy(), except that they perform the
operation on all three color planes at once.
261

Chapter 3

262
Notes (cont.) This method uses images derived from the DT
Vision Foundry supplied CcImage class.
These include binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
color images. This method uses an ROI
derived from the DT Vision Foundry supplied
CcRoiBase class. These include all DT Vision
Foundry ROIs. It also works with your own
images or ROIs derived from these classes.

Return Values

–1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256*C8BitImage1;
//8-Bit grayscale Image 1
CcGrayImageFloat*CFloatImage;
//Floating point grayscale Image
CcRoiRect* CRectRoi;
//Where operation takes place
CcArithmeticCArith;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
C8BitImage1 =

new CcGrayImage256();
CFloatImage =

new CcGrayImageFloat();
CRectRoi = new CcRoiRect();

Using the Arithmetic Tool API

3

3

3

3

3

3

3

3

3

Example (cont.) //Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord(

(VOID*)&stROI);
//Open images from disk (or get

image data from frame grabber)
C8BitImage1->OpenBMPFile(

“image1.bmp”);
CFloatImage->OpenBMPFile(

“output.bmp”);
//Perform copy; Output Image =
//Image1.
CArith.Copy(C8BitImage1,

CFloatImage, CRectRoi, 0,
//Do not threshold or absolute
//value

1, //Set gain to 1
0, //Set offset to 0
0, //Threshold values unused
0);

//Save output to disk
CFloatImage->SaveBMPFile(

“output.bmp”);
//Free memory
delete C8BitImage1;
delete CFloatImage;
delete CRectRoi;
}

263

Chapter 3

264

4
Using the AVI Player Tool API

Overview of the AVI Player Tool API . 266

CcAVI Member Methods. 268
265

Chapter 4

266
Overview of the AVI Player Tool API
The API for the AVI tool has one object only: the CcAVI class. This
class allows you to read and write AVI files. In addition, you can open
an existing .AVI file and read frames one at a time from the file into a
custom application and you can create a new AVI file and write
frames to this file from within a custom application. The CcAVI class
does not allow you to edit .AVI files.

The CcAVI class uses a standard constructor and destructor and the
class methods listed in Table 15.

Table 15: CcAVI Class Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcAVI(void);

~CcAVI(void);

CcAVI Class
Methods

bool SetColorImageType(int iType);

int Open(LPCSTR szFileName);

int Create(LPCSTR szFileName, int iImageType, int iWidth,
int iHeight);

int Close();

BOOL IsOpenForReading();

BOOL IsOpenForWriting();

int GetFrameCount(int *piFrameCount);

int GetFrameDimensions(int *piWidth, int *piHeight);

int GetFrameType(int *piFrameType);

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

CcAVI Class
Methods (cont.)

int GetCompatibleImage(CcImage **ppImage);

int ReadFrame(CcImage *pImage, int iFrame);

int WriteFrame(CcImage *pImage);

Table 15: CcAVI Class Methods (cont.)

Method Type Method Name
267

Chapter 4

268
CcAVI Member Methods
This section describes each method of the CcAVI class in detail.

SetColorImageType

Syntax bool SetColorImageType(int iType
);

Include Files C_Avi.h

Description Specifies the type of color image to generate.

Parameters

Name:

Description:

iType

Defines the type of color image. Use
DEF_COLOR_RGB for RGB images; use
DEF_COLOR_HSL for HSL images.

Notes Images are stored on disk in RGB format;
however, when a file is accessed, you can
import the images into DT Vision Foundry in
either RGB or HSL format.

Return Values

TRUE Successful.

FALSE Unsuccessful.

Example The following is a sample code fragment:

CcAVI AVI; // AVI object instance.

bool Result;
//Set the image type to RGB
Result = AVI.SetColorImageType(

DEF_COLOR_RGB);

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Open

Example (cont.) if (!Result)
{
// Operation failed - handle error.
}

Syntax int Open(LPCSTR szFileName
);

Include Files C_Avi.h

Description Opens an existing .AVI file.

Parameters

Name:

Description:

szFileName

A pointer to a zero-terminated character string
that contains the fully qualified name (path
plus file name) of the .AVI file to open.

Notes None

Return Values

< 0 The AVI file could not be opened.

0 Successful.

Example The following is a sample code fragment:

CcAVI AVI; // AVI object instance.

int Result;

Result = AVI.Open(“C:\\MyAviFiles
\\MyAviFile.avi”);

if (Result < 0)
{
// Operation failed - handle error.
}

269

Chapter 4

270
Create

Syntax int Create(
LPCSTR szFileName,
int iImageType,
int iWidth,
int iHeight
);

Include Files C_Avi.h

Description Creates a new .AVI file with the specified file
name. The file can store images of the specified
image type, width, and height.

Parameters

Name:

Description:

szFileName

A pointer to a zero-terminated character string
that contains the fully qualified name (path
plus file name) of the .AVI file to create.

Name:

Description:

iImageType

The type of image to write to the .AVI file. It
can be either IMAGE_TYPE_08BIT_GS,
IMAGE_TYPE_24BIT_RGB, or
IMAGE_TYPE_24BIT_HSL. No other image
types are currently supported.

Name:

Description:

iWidth

The width of the images that will be written to
the .AVI file.

Name:

Description:

iHeight

Specifies the height of the images that will be
written to AVI file.

Notes None

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Close

Return Values

< 0 The .AVI file specified by szFileName cannot be
created, an unsupported image type was
specified for iImageType, or iWidth and/or
iHeight have negative values.

0 Successful.

Example The following is a sample code fragment:

CcAVI AVI; // AVI object instance.
int iImageType =

IMAGE_TYPE_08BIT_GS;
int iWidth = 640;
int iHeight = 480;
int iResult;
// Create a new AVI file that can
// hold 8-bit grayscale images with
// dimensions 640x480.
iResult = AVI.Create

(“C:\\MyAviFiles\\
MyAviFile.avi”,
iImageType, iWidth,
iHeight);

if (iResult < 0)
{
// Operation failed - handle error.
}

Syntax int Close(
);

Include Files C_Avi.h
271

Chapter 4

272
IsOpenForReading

Description Closes an .AVI file that was opened using the
Open method or created using the Create
method.

Parameters None

Notes None

Return Values

< 0 No .AVI file is open.

0 Successful.

Example The following is a sample code fragment:

CcAVI AVI; // AVI object instance.
int Result;

Result = AVI.Close();
if (Result < 0)
{
// Operation failed - handle error.
}

Syntax BOOL IsOpenForReading(
);

Include Files C_Avi.h

Description Determines whether an .AVI file is open for
reading.

Parameters None

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Notes An .AVI file that is loaded using a call to the
Open method is considered to be open for
reading. An .AVI file can either be open for
reading or open for writing, but not both.
Therefore, a program cannot write frames to an
.AVI file if it was loaded using a call to Open.
To write to an .AVI file, a new file must first be
created using the Create method.

Return Values

FALSE The current AVI file is not open for reading.

TRUE The current AVI file is open for reading.

Example The following is a sample code fragment:

// Image object for reading from
// AVI file.
CcImage *pImage;
CcAVI AVI; // AVI object instance.
int Result;
Result = AVI.IsOpenForReading();
if (Result == TRUE)
{
// Get an image object that is
// compatible with the frames in
// the AVI file.
if (AVI.GetCompatibleImage

(&pImage) < 0)
{
// Operation failed - handle error.
}

// Read frame zero from the AVI
// file.
273

Chapter 4

274
IsOpenForWriting

Example (cont.) if (AVI.ReadFrame(pImage, 0) < 0)
{
// Operation failed - handle error.
}
// Delete image object when done.
delete pImage;
}

Syntax BOOL IsOpenForWriting(
);

Include Files C_Avi.h

Description Determines whether an .AVI file is open for
writing.

Parameters None

Notes An .AVI file that is created using a call to the
Create method is considered to be open for
writing. An .AVI file can either be open for
reading or open for writing, but not both.
Therefore, a program cannot read frames from
an .AVI file if it was created using a call to
Create. To read from an .AVI file, an existing
file must first be opened by calling the Open
method.

Return Values

FALSE The current AVI file is not open for writing.

TRUE The current AVI file is open for writing.

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Example The following is a sample code fragment:

// Image object for writing to
// AVI file.
CcImage *pImage;
CcAVI AVI; // AVI object instance.
int Result;
Result = AVI.IsOpenForWriting();
if (Result == TRUE)
{
// Get an image object that is
// compatible with the AVI file
// format.

if (AVI.GetCompatibleImage(
&pImage) < 0)

{
// Operation failed - handle error.
}

// Add data to image object ...
// Write image to AVI file.
if (AVI.WriteFrame(pImage) < 0)
{
// Operation failed - handle error.
}

// Delete image object when done.
delete pImage;
}

275

Chapter 4

276
GetFrameCount

Syntax int GetFrameCount(
int *piFrameCount
);

Include Files C_Avi.h

Description Returns the number of frames in the current
.AVI file.

Parameters

Name:

Description:

piFrameCount

A pointer to the integer that contains the frame
count.

Notes None

Return Values

< 0 The frame count cannot be obtained from the
current .AVI file, and/or the input argument is
NULL.

0 Successful.

Example The following is a sample code fragment:

// Holds frame count.
int iFrameCount;
int iResult;
CcAVI AVI; // AVI object instance.

iResult = AVI.GetFrameCount
(&iFrameCount);

if (iResult < 0)
{
// Operation failed - handle error.
}

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

GetFrameDimensions

Syntax int GetFrameDimensions(
int *piWidth,
int *piHeight
);

Include Files C_Avi.h

Description Returns the dimensions of the frames in the
current .AVI file.

Parameters

Name:

Description:

piWidth

A pointer to the integer that contains the frame
width.

Name:

Description:

piHeight

A pointer to the integer that contains the frame
height.

Notes None

Return Values

< 0 The frame dimensions cannot be obtained from
the current .AVI file, and/or one or more of the
input arguments is NULL.

0 Successful.

Example The following is a sample code fragment:

// Holds frame width and height.
int iWidth, iHeight;
int iResult;
CcAVI AVI; // AVI object instance.

iResult = AVI.GetFrameDimensions
(&iWidth, &iHeight);
277

Chapter 4

278
GetFrameType

Example (cont.) if (iResult < 0)
{
// Operation failed - handle error.
}

Syntax int GetFrameType(
int *piFrameType
);

Include Files C_Avi.h

Description Returns the type of the frames in the current
.AVI file.

Parameters

Name:

Description:

 piFrameType

A pointer to the integer that contains the frame
type. Possible types are
IMAGE_TYPE_08BIT_GS,
IMAGE_TYPE_24BIT_RGB, and
IMAGE_TYPE_24BIT_HSL.

Notes None

Return Values

< 0 The frame type cannot be obtained from the
current .AVI file, and/or the input argument is
NULL.

0 Successful.

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

GetCompatibleImage

Example The following is a sample code fragment:

int iFrameType; // Holds frame
type.

CcAVI AVI; // AVI object instance.
int Result;

Result = AVI.GetFrameType
(&iFrameType);

if (Result < 0)
{
// Operation failed - handle error.
}

Syntax int GetCompatibleImage(
CcImage **ppImage
);

Include Files C_Avi.h

Description Returns an image object that is compatible
with the format of the current .AVI file
(compatible image type, width, and height).

Parameters

Name:

Description:

ppImage

A pointer to a pointer to a CcImage object that
contains the newly created image object.

Notes You can use the image object returned by this
method in subsequent calls to ReadFrame.
Make sure that you free all image objects
obtained through calls to this method.
279

Chapter 4

280
ReadFrame

Return Values

< 0 The frames in the .AVI file cannot be imported
using images of type
IMAGE_TYPE_08BIT_GS,
IMAGE_TYPE_24BIT_RGB,
IMAGE_TYPE_24BIT_HSL, and/or the input
argument is NULL.

0 Successful.

Example The following is a sample code fragment:

// Image object for writing to
// AVI file.
CcImage *pImage;
CcAVI AVI; // AVI object instance.
int iResult;
iResult = AVI.GetCompatibleImage

(&pImage);
if (iResult < 0)
{
// Operation failed - handle error.
}

// Delete image object when done.
delete pImage;

Syntax int ReadFrame(
CcImage *pImage,
int iFrame
);

Include Files C_Avi.h

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Description Returns the specified frame from the current
.AVI file and places it in the specified image
object.

Parameters

Name:

Description:

 pImage

A pointer to a pointer to a CcImage object that
contains the frame returned from the .AVI file.

Name:

Description:

 iFrame

The number of the frame that you want to
return. The value can range from 0 to n – 1,
where n is the total number of frames in the
.AVI file.

Notes You can read frames only from .AVI files that
are open for reading. Refer to
IsOpenForReading for more information.

Return Values

< 0 The specified frame is invalid (out of range),
and/or the input argument is NULL.

0 Successful.

Example The following is a sample code fragment:

// Image object for writing to
// AVI file.
CcImage *pImage;
CcAVI AVI; // AVI object instance.

// Get a compatible image object.
if (AVI.GetCompatibleImage

(&pImage) == 0)
{
// Make sure AVI file is open for
// reading.
281

Chapter 4

282
WriteFrame

Example (cont.) if (AVI.IsOpenForReading())
{

// Read frame 0 from the AVI file.
if (AVI.ReadFrame(pImage, 0)

< 0)
{

// Operation failed - handle error.
}

}
// Delete the image object.
delete pImage;
}

Syntax int WriteFrame(CcImage *pImage
);

Include Files C_Avi.h

Description Writes the image in the specified image object
to the current .AVI file.

Parameters

Name:

Description:

pImage

A pointer to a pointer to a CcImage object that
you want to write to the .AVI file.

Notes The image is appended to the end of the .AVI
file.

You can write images only to .AVI files that are
open for writing. Refer to IsOpenForWriting
for more information.

Using the AVI Player Tool API

4

4

4

4

4

4

4

4

4

Return Values

< 0 The format of the specified image object is not
compatible with that of the .AVI file, and/or
the input argument is NULL.

0 Successful.

Example The following is a sample code fragment:

// Image object for writing to AVI
// file.
CcImage *pImage;
CcAVI AVI; // AVI object instance.

// Get a compatible image object.
if (AVI.GetCompatibleImage

(&pImage) == 0)
{
// Make sure AVI file is open for
// reading.

if (AVI.IsOpenForWriting())
{

// Fill in image with data ...
// Write frame 0 from the AVI file.

if (AVI.WriteFrame(pImage)
< 0)

{
// Operation failed - handle error.

}
}

// Delete the image object.
delete pImage;
}
283

Chapter 4

284

5
Using the Barcode Tool API

Description of CcBarCode Methods . 287

Example Program Using the Barcode API 304
285

Chapter 5

286
Overview of the Barcode Tool
The Barcode API has one object only: the CcBarCode class. This tool
reads a barcode symbol located within a rectangular ROI on an input
image. The input image and input ROI are both DT Vision Foundry
objects. For further information on these objects, see Chapter 2
starting on page 11 and the example program at the end of this
section.

Table 16 lists the methods of the CcBarCode object.

Table 16: CcBarCode Object Methods

Method Type Method Name

Constructor &
Destructor

CcBarCode();

~ CcBarCode()

Initialize Methods int ReadTable(char* cFileName, int iBarcodeType);

Barcode Read
Methods

char* ReadBarcode(CcImage* CImage, CcRoiRect* CRoi);

Set Barcode
Reading Options
Methods

int SetBCOptions(STBCOPTIONS* pstBCOptions);

int GetBCOptions(STBCOPTIONS* pstBCOptions);

int SetLPOptions(STLPOPTIONS* pstLPOptions);

int GetLPOptions(STLPOPTIONS* pstLPOptions);

Save and Restore
Methods

int RestoreOptions(char* cFileName);

int SaveOptions(char* cFileName);

Autothreshold
Methods

int SetAutothreshold(int iThresholdValue);

intGetAutothreshold();

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

Description of CcBarCode Methods
This section describes each method of the CcBarCode class in detail.

GetBCOptions

Syntax int GetBCOptions(
STBCOPTIONS* pstBCOptions);

Include File C_BCode.h

Description Retrieves the options for reading a barcode.

Parameters

Name:

Description:

pstBCOptions

Pointer to a STBCOPTIONS structure that
contains the barcode options.

Notes Use this method to get the barcode options
before reading a barcode using
ReadBarcode(). The method takes a pointer
to a STBCOPTIONS structure, which is
defined as follows:

struct stBCOptionsTag {
int iBarcodeType;
int iReadBiDirectional;
int iWhiteBarsBlackSpaces;
int iDoErrorChecking;
int iDoHardToRead;
int iDoStopChar;
int iReadVertical;
};
typedef stBCOptionsTag

STBCOPTIONS;
287

Chapter 5

288
Notes (cont.) The elements of the structure are described as
follows:

• iBarcodeType − The type of barcode that you
want to read:
− HLBARCODE_128 = 128 barcode.

− HLBARCODE_2_5 = 2 of 5 barcode.

− HLBARCODE_3_9 = 3 of 9 barcode.

− HLBARCODE_UPCA = UPC Version A
barcode.

− HLBARCODE_EAN13 = EAN13
barcode.

− HLBARCODE_EAN8 = EAN8 barcode.

− HLBARCODE_POSTNET = POSTNET
barcode.

• iReadBiDirectional
− 1 = Reads bidirectionally.

− 0 = Does not read bidirectionally.

• iWhiteBarsBlackSpaces
− 1 = Reads white bars with black spaces.

− 0 = Does not read white bars with black
spaces.

• iDoErrorChecking
− 1 = Performs error checking.

− 0 = Does not perform error checking.

• iDoHardToRead
− 1 = Invokes the specialized barcode

algorithm to read distorted, noisy,
hard-to-read barcodes.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

GetLPOptions

Notes (cont.) − 0 = Does not invoke the specialized
barcode algorithm.

• iDoStopChar
− 1 = Checks for the stop character.

− 0 = Does not check for the stop
character.

• iReadVertical
− 1 = Reads the barcode in the vertical

direction.

− 0 = Reads the barcode in the horizontal
direction.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetLPOptions(
STLPOPTIONS* pstLPOptions);

Include File C_BCode.h

Description Gets the line profile options that were used
when reading the barcode.

Parameters

Name:

Description:

pstLPOptions

Pointer to a STLPOPTIONS structure for
getting the line profile options.

Notes Use this method to get the line profile options
before reading a barcode using
ReadBarcode().
289

Chapter 5

290
Notes (cont.) The method takes a pointer to a
STLPOPTIONS structure, which is defined as
follows:

struct stLPOptionsTag {
int iGenLineAve;
float fGenAmp;
float fGenOffset;
int iGenProfileAve;

int i1stDerGrad;
float f1stDerAmp;
float f1stDerOffset;
int i1stDerProfileAve;

int i2ndDerGrad;
float f2ndDerAmp;
float f2ndDerOffset;
int i2ndDerProfileAve;

float fEdgeFindLo;
float fEdgeFindHi;
};
typedef struct stLPOptionsTag

STLPOPTIONS;

The elements of this structure take the same
values that you would enter in the line
profile’s option boxes when finding edges. For
more information, refer to the DT Vision
Foundry User’s Manual.

The following values correspond to the profile
options in the line profile’s options dialog box:

• iGenLineAve − The value of the Width
entry.

• fGenAmp − The value of the Gain entry.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

Notes (cont.) • fGenOffset − The value of the Offset entry.

• iGenProfileAve − The value of the Ave entry.

These values correspond to the first derivative
options in the line profile’s options dialog box:

• i1stDerGrad − The value of the Slope entry.

• f1stDerAmp − The value of the Gain entry.

• f1stDerOffset − The value of the Offset
entry.

• i1stDerProfileAve − The value of the Ave
entry.

The following values correspond to the
second derivative options in the line profile’s
profile options dialog box:

• i2ndDerGrad − The value of the Slope entry.

• f2ndDerAmp − The value of the Gain entry.

• f2ndDerOffset − The value of the Offset
entry.

• i2ndDerProfileAve − The value of the Ave
entry.

The following values correspond to the noise
limit options in the line profile’s find edges
dialog box:

• fEdgeFindLo − The value of the low-noise
limit.

• fEdgeFindHi − The value of the high-noise
limit.
291

Chapter 5

292
ReadBarcode

Notes (cont.) The POSTNET reader does not use Line
Profile APIs; therefore, SETLPOptions and
GetLPOptions are not used for reading
POSTNET barcodes.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax char* ReadBarcode(
 CcImage* CImage,
 CcRoiRect* CRoi);

Include File C_BCode.h

Description Reads the barcode in the image CImage with
respect to the location designated by CRoi.

Parameters

Name:

Description:

CImage

Pointer to a DT Vision Foundry Image object
that contains the barcode to read.

Name:

Description:

CRoi

Pointer to a RECTANGULAR DT Vision
Foundry ROI object that is located around the
barcode in the image.

Notes Before calling this method to read a barcode,
you must initialize the classes’ internal table,
which translates bar/space widths into
human readable text, by calling ReadTable()
for each type of barcode that you want to
read.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

ReadTable

Return Values

NULL Unsuccessful.

A string that contains the
barcode text.

Successful.

Syntax int ReadTable(
 char* cFileName,
 int iBarcodeType);

Include File C_BCode.h

Description Initializes the class’s internal table for reading
a specific barcode type.

Parameters

Name:

Description:

cFileName

Full path name of the file that contains the
table information for a specific barcode.

Name:

Description:

iBarcodeType

Specific barcode type whose table you are
initializing. Choose one of the following
options:

• HLBARCODE_128 − 128 barcode.

• HLBARCODE_2_5 − 2 of 5 barcode.

• HLBARCODE_3_9 − 3 of 9 barcode.

• HLBARCODE_UPCA − UPC Version A
barcode.

• HLBARCODE_EAN13 = EAN13 barcode.
293

Chapter 5

294
Description (cont.): • HLBARCODE_EAN8 = EAN8 barcode.

• HLBARCODE_POSTNET = POSTNET
barcode.

Before calling ReadBarcode() to read a
barcode, you must initialize the classes’
internal table, which translates bar/space
widths into human readable text. These tables
are stored on disk in ASCII text and must be
loaded before you can read the barcode. For
each type of supported barcode that you plan
to read, you must load the associated table.

Notes The files you need to load are shipped with
DT Vision Foundry and are as follows:

• Filename: Table128.txt;
Barcode type: HLBARCODE_128;
128 barcode.

• Filename: N/A;
Barcode type: HLBARCODE_2_5;
2 of 5 barcode.

• Filename: Table3_9.txt;
Barcode type: HLBARCODE_3_9;
3 of 9 barcode.

• Filename: TableUPCA.txt;
Barcode type: HLBARCODE_UPCA;
UPC Version A barcode.

• Filename: TableEAN.txt
Barcode type: HLBARCODE_EAN13 and
HLBARCODE_EAN8; EAN13 and EAN 8
barcodes, respectively.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5
RestoreOptions

Notes (cont.) • Filename: TablePOSTNET.txt
Barcode type: HLBARCODE_POSTNET;
POSTNET barcode.

No table is provided for barcode 2 of 5.
Therefore, this method does not need to be
called to read 2 of 5 barcodes.

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int RestoreOptions(
char* cFileName);

Include File C_BCode.h

Description Restores all the options that were used when
reading the barcode.

Parameters

Name:

Description:

cFileName
Full path name of the file from which to
restore barcode options.

Notes After using the other methods to set all the
options in the barcode class for reading a
barcode, you can use this method to restore
your options.
295

Chapter 5

296
SaveOptions

Notes (cont.) As with most DT Vision Foundry restore
methods, you can also use the Barcode tool to
easily set up all the barcode options using its
GUI, and then use its SaveAs menu item to
save these settings to disk. This saves time
and effort in programming. You can then use
RestoreOptions() to restore all the options
without programming these settings.

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int SaveOptions(char* cFileName);

Include File C_BCode.h

Description Saves all the options that were used when
reading the barcode.

Parameters

Name:

Description:

cFileName

Full path name of the file in which to save the
barcode options.

Notes After using the other methods to set all the
options in the barcode class for reading a
barcode, you can use this method to save your
options.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

SetBCOptions

Notes (cont.) As with most DT Vision Foundry save
methods, you can also use the Barcode tool to
easily set up all the barcode options using its
GUI, and then use its SaveAs menu item to
save these settings to disk. This saves time
and effort in programming. You can then use
RestoreOptions() to restore all the options
without programming these settings.

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int SetBCOptions(
STBCOPTIONS* pstBCOptions);

Include File C_BCode.h

Description Sets the barcode options for reading a
barcode.

Parameters

Name:

Description:

pstBCOptions

Pointer to a STBCOPTIONS structure for
setting or getting the barcode options.

Notes Use this method to set the barcode options
before reading a barcode using
ReadBarcode().
297

Chapter 5

298
Notes (cont.) The method takes a pointer to a
STBCOPTIONS structure, which is defined as
follows:

struct stBCOptionsTag {
int iBarcodeType;
int iReadBiDirectional;
int iWhiteBarsBlackSpaces;
int iDoErrorChecking;
int iDoHardToRead;
int iDoStopChar;
int iReadVertical;
};
typedef stBCOptionsTag

STBCOPTIONS;

The elements of the structure are described as
follows:

• iBarcodeType − The type of barcode you
wish to read:
− HLBARCODE_128 − 128 barcode.

− HLBARCODE_2_5 − 2 of 5 barcode.

− HLBARCODE_3_9 − 3 of 9 barcode.

− HLBARCODE_UPCA − UPC Version
A barcode.

− HLBARCODE_EAN13 = EAN13
barcode.

− HLBARCODE_EAN8 = EAN8 barcode.

− HLBARCODE_POSTNET = POSTNET
barcode.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

Notes (cont.) • iReadBiDirectional
− 1 = Reads bidirectionally.

− 0 = Does not read bidirectionally.

• iWhiteBarsBlackSpaces
− 1 = Reads white bars with black spaces.

− 0 = Does not read white bars with black
spaces.

• iDoErrorChecking
− 1 = Performs error checking.

− 0 = Does not perform error checking.

• iDoHardToRead
− 1 = Invokes the specialized barcode

algorithm to read distorted, noisy, or
hard-to-read barcodes.

− 0 = Does not invoke the specialized
barcode algorithm.

• iDoStopChar
− 1 = Checks for the stop character.

− 0 = Does not check for the stop
character.

• iReadVertical
− 1 = Reads the barcode in the vertical

direction.

− 0 = Reads the barcode in the horizontal
direction.

Returned Value

−1 Unsuccessful.

0 Successful.
299

Chapter 5

300
SetLPOptions

Syntax int SetLPOptions(STLPOPTIONS*
pstLPOptions);

Include File C_BCode.h

Description Sets the line profile options that are used
when reading the barcode.

Parameters

Name:

Description:

pstLPOptions

Pointer to a STLPOPTIONS structure for
setting the line profile options.

Notes Use this method to set the line profile options
before reading a barcode using
ReadBarcode().

The method takes a pointer to a
STLPOPTIONS structure, which is defined as
follows:

struct stLPOptionsTag {
int iGenLineAve;
float fGenAmp;
float fGenOffset;
int iGenProfileAve;
int i1stDerGrad;
float f1stDerAmp;
float f1stDerOffset;
int i1stDerProfileAve;
int i2ndDerGrad;
float f2ndDerAmp;
float f2ndDerOffset;
int i2ndDerProfileAve;
float fEdgeFindLo;
float fEdgeFindHi;
};

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

Notes (cont.) typedef struct stLPOptionsTag
STLPOPTIONS;

The elements of this structure take the same
values that you would enter in the line
profile’s option boxes when finding edges. For
more information, refer to the DT Vision
Foundry User’s Manual.

The following values correspond to the profile
options in the line profile’s options dialog box:

• iGenLineAve − The value of the Width
entry.

• fGenAmp − The value of the Gain entry.

• fGenOffset − The value of the Offset entry.

• iGenProfileAve − The value of the Ave entry.

The following values correspond to the first
derivative options in the line profile’s options
dialog box:

• i1stDerGrad − The value of the Slope entry.

• f1stDerAmp − The value of the Gain entry.

• f1stDerOffset − The value of the Offset
entry.

• i1stDerProfileAve − The value of the Ave
entry.

The following values correspond to the
second derivative options in the line profile’s
options dialog box:

• i2ndDerGrad − The value of the Slope entry.

• f2ndDerAmp − The value of the Gain entry.
301

Chapter 5

302
SetAutothreshold

Notes (cont.) • f2ndDerOffset − The value of the Offset
entry.

• i2ndDerProfileAve − The value of the Ave
entry.

The following values correspond to the noise
limit options in the line profile’s find edges
dialog box:

• fEdgeFindLo − The value of the low noise
limit.

• fEdgeFindHi − The value of the high noise
limit.

The Barcode Reader does not use
SETLPOptions and GetLPOptions for
reading POSTNET barcodes.

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int SetAutothreshold(int
iThresholdValue);

Include File C_BCode.h

Description Sets the autothreshold value that is used when
reading POSTNET barcodes.

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

GetAutothreshold

Parameters

Name:

Description:

iThresholdValue

The automatic threshold reference number.
Values range from 0 to 100.

Notes The Barcode Reader does not use
SETLPOptions and GetLPOptions for
reading POSTNET barcodes.

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int GetAutothreshold();

Include File C_BCode.h

Description Returns the autothreshold value that is used
when reading POSTNET barcodes.

Parameters None

Notes The Barcode Reader does not use
SETLPOptions and GetLPOptions for
reading POSTNET barcodes.

Returned Value

−1 Unsuccessful.

0 to 100 Successful; the automatic threshold reference
value is returned.
303

Chapter 5

304
Example Program Using the Barcode API
This example uses the CcBarCode class to open a saved barcode
setting file from disk, read the barcode, and show the barcode text in
a standard Windows message box. Note that the settings file was
originally generated using the Barcode tool’s GUI. All you have to do
is open the file from disk to set up the desired settings. The image and
ROI are passed on the parameter list. For information on creating
images and ROIs, see Chapter 2 and/or the Picture tool in xx.

Note: For clarity, error checking is not included.

int SomeFunction(CcImage* CImage, CcRoiRect* CRoi)
{
CcBarCode CBCode;

//First initialize the barcode class by reading in
//the needed tables
CBCode. ReadTable (“C:\\ TABLE128.txt”,
HLBARCODE_128);
CBCode. ReadTable (“C:\\ Table3_9.txt”,
HLBARCODE_3_9);
CBCode. ReadTable (“C:\\ TableUPCA.txt”,
HLBARCODE_UPCA);

//Now restore all settings in barcode class by
//opening the settings file created with DT Vision
//Foundry
CBCode. ReadTable (“C:\\ BarcodeOpts.hbc”);

//Run the operation
pBarcode = ReadBarcode(CImage,CRoi);

Using the Barcode Tool API

5

5

5

5

5

5

5

5

5

//Show the barcode in a message box
::MessageBox(m_hWnd,pBarcode, “The barcode is:”,
MB_OK);

return(0);
}

305

Chapter 5

306

6
Using the Blob Analysis Tool

API
Overview of the Blob Analysis Tool API 308

CcBlobFinder Methods . 312

CcBlob Methods . 327

Example Program Using the Blob Analysis Tool API 344
307

Chapter 6

308
Overview of the Blob Analysis Tool API
The API for the Blob Analysis tool uses several DT Vision Foundry
API objects. Therefore, it is recommended that you read Chapter 2
starting on page 11 before reading this chapter.

The Blob Analysis API contains two objects: the CcBlobFinder class
and the CcBlob class. The CcBlobFinder class uses a binary mask
image to produce a list of CcBlob classes. You cannot create a CcBlob
class directly; you must use a CcBlobFinder class to find and create
blobs.

The CcBlobFinder class uses a standard constructor and destructor
and the class methods listed in Table 17.

Table 17: CcBlobFinder Methods

Method Type Method Name

Constructor &
Destructor

CcBlobFinder(void);

~CcBlobFinder(void);

CcBlobFinder
Class Methods

int SetMinBlobSize(int iBlobSize);

int GetMinBlobSize(void);

int SetMaxBlobSize(int iBlobSize);

int GetMaxBlobSize(void);

int SetMinBlobHeight(int iBlobHeight);

int GetMinBlobHeight(void);

int SetMaxBlobHeight(int iBlobHeight);

int GetMaxBlobHeight(void);

int SetMinBlobWidth(int iBlobWidth);

int GetMinBlobWidth(void);

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

The CcBlob class uses a standard destructor, but the constructor is
private; the class methods are listed in Table 18.

CcBlobFinder
Class Methods
(cont.)

int SetMaxBlobWidth(int iBlobWidth);

int GetMaxBlobWidth(void);

int SetBlobStatsFlags(BLOBSTATSFLAG* GroupFlags);

BLOBSTATSFLAG* GetBlobStatsFlags();

int FindChildren(int iFind);

int GrowBlobs(CcImage* cInputImage,
 CcBinaryImage* cMaskImage,RECT *pstROI);

CcList* GetBlobList(void);

Table 18: CcBlob Methods

Method Type Method Name

Constructor &
Destructor
Methods

−a

~CcBlob(void);

CcBlob Class
Methods

CcBlob* GetParent(void);

RECT* GetBoundingRect(void);

PIXELGROUPING* GetPerimeterPG(void);

STCHAINCODE* GetPerimeterChainCode(void);

int CalculateAllInfo(CcCalibration* CCalibration = NULL);

STBLOBSTATS* GetBlobStats(void);

CcRoiFreeHand* GetFreehandROI();

Table 17: CcBlobFinder Methods (cont.)

Method Type Method Name
309

Chapter 6

310
Note that the Blob Finder object is very stack intensive and requires a
large stack to grow large blobs. If you are using the Blob Analysis API
in a custom tool with DT Vision Foundry, you are already attached to
an application (DT Vision Foundry) with a large stack and do not
need to do anything else. If you are writing a custom application, you
need to increase the stack size for the application. If you are using
Visual C/C++, you can do this easily using program settings under
the Link tab in the output section as shown in Figure 1.

CcBlob Class
Methods (cont.)

CcList* GetChildBlobList(void);

int GetNumOfChildBlobs(void);

int DelChildrenOnDestructor(BOOL bFlag);

int SetBlobStatsFlags(BLOBSTATSFLAGS* GroupFlags);

BLOBSTATSFLAG* GetBlobStatsFlags();

int SetRemoveBoundaryBlobFlag (int iRemove);

int GetRemoveBoundaryBlobFlag (void);

a. The constructor is private.

Table 18: CcBlob Methods (cont.)

Method Type Method Name

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

Figure 1: Program Settings

Set the reserve to something large such as 0x5000000 and the commit
to something like 0x10000. This commits the stack to a large value but
gives it room to grow, if needed, while growing a very large blob. In
other applications, such as Visual Basic, which do not allow the stack
to be changed, you can increase the stack size by using an MFC
function call, such as AfxBeginThread.

DTVF

D:\NTProg40\DTVF\Dlls\DTAPID\Debug\DTAPID..
311

Chapter 6

312
CcBlobFinder Methods
This section describes each method of the CcBlobFinder class in
detail.

SetMinBlobSize

GetMinBlobSize

Syntax int SetMinBlobSize(int iBlobSize);

Include File C_Blobf.h

Description Sets the minimum blob parent area (number
of pixels) that a blob can have to be
considered a blob. The blob is discarded if it
has a parent area less than this value.

Parameters

Name:

Description:

iBlobSize

Minimum parent area to be considered a blob.

Notes The parent area is the area of the blob not
including its children. It is the number of
pixels in the blob, described in the DT Vision
Foundry User’s Manual.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMinBlobSize(void);

Include File C_Blobf.h

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

SetMaxBlobSize

Description Gets the minimum blob parent area that a
blob can have to be considered a blob. The
blob is discarded if it has a parent area less
than this value.

Notes The parent area is the area of the blob not
including its children. It is the number of
pixels in the blob, described in the DT Vision
Foundry User’s Manual.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int SetMaxBlobSize(int iBlobSize);

Include File C_Blobf.h

Description Sets the maximum blob parent area that a blob
can have to be considered a blob. The blob is
discarded if it has a parent area less than this
value.

Parameters

Name:

Description:

iBlobSize

Maximum parent area to be considered a blob.

Notes The parent area is the area of the blob not
including its children. It is the number of
pixels in the blob, described in the DT Vision
Foundry User’s Manual.
313

Chapter 6

314
GetMaxBlobSize

SetMinBlobHeight

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMaxBlobSize(void);

Include File C_Blobf.h

Description Returns the maximum blob parent area that a
blob can have to be considered a blob. The
blob is discarded if it has a parent area less
than this value.

Notes The parent area is the area of the blob not
including its children. It is the number of
pixels in the blob, described in DT Vision
Foundry User’s Manual.

Return Values

–1 Unsuccessful.

Maximum blob size. Successful.

Syntax int SetMinBlobHeight(int
iBlobHeight);

Include File C_Blobf.h

Description Sets the minimum blob height (number of
pixels).

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetMinBlobHeight

SetMaxBlobHeight

Parameters

Name:

Description:

iBlobHeight

Minimum height of the blob.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMinBlobHeight(void);

Include File C_Blobf.h

Description Gets the minimum blob height.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int SetMaxBlobSize(int
iBlobHeight);

Include File C_Blobf.h

Description Sets the maximum blob height.
315

Chapter 6

316
GetMaxBlobHeight

SetMinBlobWidth

Parameters

Name:

Description:

iBlobHeight

Maximum blob height.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMaxBlobHeight(void);

Include File C_Blobf.h

Description Returns the maximum blob height.

Notes None.

Return Values

–1 Unsuccessful.

Maximum blob size. Successful.

Syntax int SetMinBlobWidth(int
iBlobWidth);

Include File C_Blobf.h

Description Sets the minimum blob width.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetMinBlobWidth

SetMaxBlobWidth

Parameters

Name:

Description:

iBlobWidth

Minimum blob width.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMinBlobWidth(void);

Include File C_Blobf.h

Description Gets the minimum blob width.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int SetMaxBlobWidth(int
iBlobWidth);

Include File C_Blobf.h

Description Sets the maximum blob width.
317

Chapter 6

318
GetMaxBlobWidth

SetBlobStatsFlags

Parameters

Name:

Description:

iBlobWidth

Maximum blob width.

Notes None.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetMaxBlobWidth(void);

Include File C_Blobf.h

Description Returns the maximum blob width.

Notes None.

Return Values

–1 Unsuccessful.

Maximum blob size. Successful.

Syntax int SetBlobStatsFlags(
BLOBSTATSFLAG* GroupFlags);

Include File C_Blobf.h

Description Sets the blob statistics group flags. If a flag is
set to TRUE, the values of the corresponding
group of statistics are updated.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

Parameters

Name:

Description:

GroupFlags

A pointer to the BlobStatsFlag structure,
which is defined as follows:

struct BlobStatsFlag
{
BOOL bDoCentroid;
BOOL bDoArea;
BOOL bDoMinMax;
BOOL bDoPixelValue;
BOOL bDoAxis;
BOOL bDoPerimeter;
BOOL bDoRadius;
}
typedef struct BlobStatsFlag

BLOBSTATSFLAG;

Notes Blob statistics are divided into groups. The
following code fragments show the individual
statistics in each group:

//Always calculate these
//parameters
float fParentNumOfPixels;
float fTotalNumOfPixels;
float fNumOfChildren;

//Centroid Group
float fParentXCentroid;
float fParentYCentroid;
float fParentSumX;
float fParentSumY;
float fTotalXCentroid;
float fTotalYCentroid;
float fTotalSumX;
float fTotalSumY;
319

Chapter 6

320
Notes (cont.) //Area Group
float fParentArea;
float fROIArea;
float fParentAreaToROIRatio;
float fChildArea;
float fTotalArea;
float fChildRatio;
float fTotalAreaToROIRatio;

//Min-Max Group
float fMaxX;
float fMaxY;
float fMinX;
float fMinY;
float fYatMaxX;
float fYatMinX;
float fXatMaxY;
float fXatMinY;
float fXDifference;
float fYDifference;
float fBoundingBoxArea;
//fXDifference*fYDifference
float fParentBoxRatio;
//need fParentArea;
float fTotalBoxRatio;
//need fTotalArea

//Pixel Averages Group
float fParentGrayAverage;
float fParentRedAverage;
float fParentGreenAverage;
float fParentBlueAverage;
float fParentGrayTotal;
float fParentRedTotal;
float fParentGreenTotal;
float fParentBlueTotal;

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

Notes (cont.) float fTotalGrayAverage;
float fTotalRedAverage;
float fTotalGreenAverage;
float fTotalBlueAverage;
float fTotalGrayTotal;
float fTotalRedTotal;
float fTotalGreenTotal;
float fTotalBlueTotal;

//Axis group
float fMajorAxisAngle;
float fMinorAxisAngle;
float fMajorAxis;
float fMinorAxis;
float fAxisRatio;
float fTotalSumXX;
float fTotalSumXY;
float fTotalSumYY;
float fParentSumXX;
float fParentSumXY;
float fParentSumYY;

//Perimeter group
float fPerimeter;
float fXPerimeter;
float fYPerimeter;
float fRoundness;
float fPPDA;

//Radius group
float fAvgRadius;
float fMaxRadius;
float fMinRadius;
float fCDistance;
float fMaxRadiusAngle;
float fDiffRadiusAngle;
321

Chapter 6

322
GetBlobStatsFlags

Notes (cont.) float fRadiusRatio;

For increased speed, only those statistics in
the enabled group are calculated when
growing blobs.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax BLOBSTATSFLAG*
GetBlobStatsFlags();

Include File C_Blobf.h

Description Returns the blob statistics group flags.

Parameters None

Notes The BlobStatsFlag structure is defined as
follows:

struct BlobStatsFlag
{
BOOL bDoCentroid;
BOOL bDoArea;
BOOL bDoMinMax;
BOOL bDoPixelValue;
BOOL bDoAxis;
BOOL bDoPerimeter;
BOOL bDoRadius;
}
typedef struct BlobStatsFlag

BLOBSTATSFLAG;

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

FindChildren

Return Values

A NULL pointer. Unsuccessful.

A pointer to the
BLOBSTATSFLAG structure.

Successful.

Syntax int FindChildren(BOOL bFind);

Include File C_Blobf.h

Description Enables or disables the growing of child blobs
during the blob growing process.

Parameters

Name:

Description:

bFind

Enter a value of TRUE to find all child blobs,
enter a value of FALSE if you do not want to
find child blobs.

Notes Growing child blobs is the default. When the
option is enabled, child blobs are calculated
and grown. If the option is disabled, the child
blobs are not grown, and the operation speeds
up the overall growing of the blobs. This is
useful if only the blob’s perimeter ROI is
important, if you do not care about child blob
information, or you know that no child blobs
exist.

If more than one level of child blobs is present
and you do not grow the children, the
parameter totals do not include the
information contained in the ungrown child
blobs. In some cases, this is what is desired, in
other cases it may be an incorrect value.
323

Chapter 6

324
GrowBlobs

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GrowBlobs(
 CcImage* cInputImage,
 CcBinaryImage* cMaskImage,
 RECT* pstROI);

Include File C_Blobf.h

Description Finds the blobs within the given ROI.

Parameters

Name:

Description:

cInputImage

Pointer to the image in which you want to
find blobs; it can be any image type.

Name:

Description:

cMaskImage

Pointer to a binary image to be used as a mask
for finding the blobs.

Name:

Description:

pstROI

Pointer to a RECT structure used for the active
ROI.

Notes The cMaskImage image is the same as the
binary mask image described in the DT Vision
Foundry User’s Manual.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6
GetBlobList

Notes (cont.) The pstROI parameter is a pointer to a
Windows RECT structure and is most likely
determined by an active RECT ROI class. The
cMaskImage parameter is usually a
thresholded resultant binary image of
cInputImage. See Chapter 28 starting on page
925 for more information.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax CcList* GetBlobList(void);

Include File C_Blobf.h

Description Gets the list of CcBlob classes found after
calling GrowBlobs().

Notes After creating the list of blobs by calling
GrowBlobs(), you can get a pointer to this list
by calling this method. This method returns a
CcList*. CcList* is a DT Vision Foundry
API-supplied class that contains a list of DT
Vision Foundry objects. You must cast any
pointers returned by the CcList* methods. For
more information on the CcList class, see the
DT Vision Foundry API, described in Chapter
2 starting on page 11. For an example of how
to use this method and a CcList class, see the
example program at the end of this section.
325

Chapter 6

326
Notes (cont.) The CcBlobFinder class always creates this list
of blobs, but does not destroy the blobs or the
list, since you want to free the memory for the
CcBlobFinder class but use the newly found
blobs.

You are responsible for deleting both the list
and all the blobs.

You can delete the list and all the blobs easily
by setting up the returned list to delete its
objects, and then deleting the returned list. By
default, the list is NOT set up to delete all of
its objects on its own destruction.

However, all of its objects (the parent blobs)
are set, by default, to delete all their children.
Thus, by deleting the returned list, you can
free all memory for all lists and all blobs
created by the CcBlobFinder class.

Consider this example (also see the example
code at the end of this chapter and the custom
tool example “Blob1”):

CListBlob->SetDestructionType
(LIST_DELETE_ON_DISTRUCTOR);

delete CListBlob;

Return Values

NULL Unsuccessful.

Pointer to CcBlob classes. Successful.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

CcBlob Methods
This section describes each method of the CcBlob class in detail.

GetParent

GetBoundingRect

Syntax CcBlob* GetParent(void);

Include File C_Blob.h

Description Returns a pointer to the parent of this blob, if
it has one. If it is a top-level blob, the blob has
no parent blob, and returns NULL.

Notes When finding blobs, the CcBlobFinder class
finds all child blobs of all blobs. The level of
child blobs is unlimited. Each parent blob has
a list (a CcList) of all of its child blobs. Each
child blob may also be a parent blob of yet
another layer of blobs, and so on.

Return Values

NULL Unsuccessful.

Pointer to this blob’s parent
blob.

Successful.

Syntax RECT * GetBoundingRect(void);

Include File C_Blob.h

Description Returns a pointer to the bounding rectangle
for this blob.

Notes A bounding rectangle is the smallest rectangle
that totally encloses the blob’s freehand ROI.
327

Chapter 6

328
GetPerimeterPG

GetPerimeterChainCode

Return Values

NULL Unsuccessful.

Pointer to this blob’s
bounding rectangle.

Successful.

Syntax PIXELGROUPING* GetPerimeterPG(
void);

Include File C_Blob.h

Description Gets a pointer to a pixel-grouping structure
that describes the perimeter of the blob.

Notes This method returns the perimeter of the blob
in the form of a pixel-grouping structure. The
pixel-grouping structure groups pixels given
in x, y coordinates starting from the lower
left-hand corner of the image; these pixel
comprise the perimeter of the blob.

Return Values

NULL Unsuccessful.

Pointer to this blob’s
perimeter.

Successful.

Syntax STCHAINCODE* GetPerimeterChainCode
(void);

Include File C_Blob.h

Description Gets a pointer to a chain-code structure that
describes the perimeter of the blob.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

CalculateAllInfo

Notes A chain-code structure is an array of values
that describes the chain-code of the perimeter.

Return Values

NULL Unsuccessful.

Pointer to this blob’s
perimeter.

Successful.

Syntax int CalculateAllInfo(
CcCalibration* CCalibration =
NULL);

Include File C_Blob.h

Description Calculates all blob information for the blob
and its children.

Parameters

Name:

Description:

CCalibration

Pointer to a Calibration object.

Returned Values

−1 Unsuccessful.

0 Successful.
329

Chapter 6

330
Example Blob information is described in detail in the
DT Vision Foundry User’s Manual. This method
calculates all the blob information that is
given. If it is provided, a Calibration object is
used to calculate all parameters in calibrated
units. If a Calibration object is not given, all
parameters are calculated in pixels.

struct STBLOBSTATS{
//Parent Information
float fParentArea;
float fParentXCentroid;
float fParentYCentroid;

in iParentNumOfPixels;

float fROIArea;
float ParentAreaToROIRatio;

float fParentGrayAverage;
float fParentRedAverage;
float fParentGreenAverage;
float fParentBlueAverage;

float fYatMaxX;
float fYatMinX;
float fXatMaxY;
float fXatMinY;

float fXDifference;
float fYDifference;
float fBoundingBoxArea;
float fParentBoxRatio;

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

Example (cont.) //Child(Hole) Info
int iNumOfChildren;
float fChildArea;
float fTotalArea;
float fChildRatio;

int iTotalNumOfPixels;

float fTotalXCentroid;
float fTotalYCentroid;

float fParentGrayTotal;
float fParentRedTotal;
float fParentGreenTotal;
float fParentBlueTotal;

int iParentSumX;
int iParentSumXX;
int iParentSumXY;
int iParentSumY;
int iParentSumYY;

float fMaxX;
float fMaxY;
float fMinX;
float fMinY;

float fTotalAreaToROIRatio;

float fTotalGrayAverage;
float fTotalRedAverage;
float fTotalGreenAverage;
float fTotalBlueAverage;
331

Chapter 6

332
GetBlobStats

Example (cont.) float fTotalGrayTotal;
float fTotalRedTotal;
float fTotalGreenTotal;
float fTotalBlueTotal;
int iTotalSumX;
int iTotalSumXX;
int iTotalSumXY;
int iTotalSumY;
int iTotalSumYY;

float fTotalBoxRatio;

//Perimeter Info
float fPerimeter;
float fXPerimeter;
float fYPerimeter;
float fRoundness;
float fPPDA;

//Center of Mass Info
float fAvgRadius;
float fMaxRadius;
float fMinRadius;
float fCDistance;
float fMaxRadiusAngle;
float fMinRadiusAngle;
float fDiffRadiusAngle;
float fRadiusRatio;
};

Syntax STBLOBSTATS* GetBlobStats(void);

Include File C_Blob.h

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetFreehandROI

Description Returns a pointer to the blob information
structure.

Notes All blob information calculated is returned to
the calling program using a pointer to a
structure called STBLOBSTATS. This structure
contains valid information only if you have
called CalculateAllInfo(), described on page
329.

For a detailed view of the structure
STBLOBSTATS, refer to the header file
C_Blob.h located in C:\Program Files\Data
Translation\DT Vision Foundry\C++ Devel\
Include, by default.

Return Values

NULL Unsuccessful.

Pointer to the blob
information.

Successful.

Syntax CcRoiFreeHand*
GetFreehandROI(void);

Include File C_Blob.h

Description Creates and returns a pointer to a freehand
ROI that outlines the perimeter of the blob.

Notes The first time it is called, this method creates a
new freehand ROI object that describes the
perimeter of the blob. Each additional time
this method is called, the same freehand ROI
pointer is returned.
333

Chapter 6

334
GetChildBlobList

Notes (cont.) You are responsible for freeing the memory
for this ROI. For example, if you call this
method twice, you will receive the same
freehand ROI pointer to the same ROI object.
You must free the memory for this ROI object
only once.

Once you delete the ROI object that is
returned to you using this method, you
should not call this method again. If you do
call this method after you deleted the ROI
object, the same pointer is returned but the
pointer is invalid since you deleted the object.

Return Values

NULL Unsuccessful.

Pointer to a freehand ROI. Successful.

Syntax CcList* GetChildBlobList(void);

Include File C_Blob.h

Description Returns a pointer to the list of child blobs for
this blob.

Notes All blobs contain a list of its child blobs. This
list is a DT Vision Foundry API object called a
CcList. If it has no children, the blob still has a
list of child blobs but the list is empty.
Remember that this environment is
object-oriented, and thus, a blob is a blob. A
blob can be viewed as both a parent to its
children and a child of its parent. A top-level
blob does not have a parent.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetNumofChildBlobs

Notes (cont.) If you delete a blob, you must remove the blob
from its parent’s list (if it has a parent) and
delete all of the blob’s children to avoid
memory leaks. If you do not remove the blob
from its parent’s list, the system could crash if
the parent tries to use this blob.

If you delete a blob and do not delete its child
blobs, memory leaks occur because these
children are normally deleted by their parent
when the parent is deleted.

A simple way to remove a blob from its parent
list is to use the list to delete the blob. A CcList
object, by default, deletes the object if the
object is removed from the list using any of
the delete methods. Also, the blob deletes all
of its children, by default.

Return Values

NULL Unsuccessful.

Pointer to a CcList of child
blobs.

Successful.

Syntax int GetNumOfChildBlobs(void);

Include File C_Blob.h

Description Returns the total number of child blobs that
belong to this blob.
335

Chapter 6

336
Notes The total number of child blobs refers to all
levels (descendants) of blobs under this blob,
not just this blob’s immediate children. If you
want the immediate number of children that
belong to this blob, you must first get a
pointer to the list of child blobs, and then ask
the list how many children it contains.

CcList is a DT Vision Foundry API object.

Returned Value

NULL Unsuccessful.

Number of child blobs that
belong to this blob.

Successful.

Example This example returns both the number of
immediate children for the blob CThisBlob and
the total number of descendants for the blob
CThisBlob.

void GetChildren(CcBlob CThisBlob,
int* iAllChildren,
int* iChildren)

{
CcList* CChildList;
//Return the total number of
//descendants for the blob in the
//variable iAllChildren.

 *iAllChildren = CThisBlob->
GetNumOfChildBlobs();

//Return the immediate number of
//children for the blob in the
//variable iChildren
//Get a pointer to the list of
//child blobs

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

DeleteChildrenOnDestructor

Example (cont.) CChildList = CThisBlob->
 GetChildBlobList();

//Ask the list how many children
//are in the list

*iChildren = CChildList->
GetNumberOfObjects();

}

Syntax int DelChildrenOnDestructor(
BOOL bFlag);

Include File C_Blob.h

Description Determines if the child blobs are deleted when
the parent blob is deleted.

Parameters

Name:

Description:

bFlag

Sets a flag to one of the following:

• TRUE − Deletes all children of this blob
(default).

• FALSE − Does not delete child blobs.

Notes By default, you need only delete the parent
blob’s list to free all memory for all blobs
found by the CcBlobFinder class. You can do
this easily by deleting the list containing the
top-level parent blobs that are returned by the
class CcBlobFinder. If you wish, you can
delete the blobs yourself by telling each blob
not to delete its children using this method.
337

Chapter 6

338
SetBlobStatsFlags

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int SetBlobStatsFlags(
BLOBSTATSFLAG* GroupFlags);

Include File C_Blob.h

Description Sets the blob statistics group flags. If a flag is
set to TRUE, the values of the corresponding
group of statistics are updated.

Parameters

Name:

Description:

GroupFlags

A pointer to the BlobStatsFlag structure,
which is defined as follows:

struct BlobStatsFlag
{
BOOL bDoCentroid;
BOOL bDoArea;
BOOL bDoMinMax;
BOOL bDoPixelValue;
BOOL bDoAxis;
BOOL bDoPerimeter;
BOOL bDoRadius;
}
typedef struct BlobStatsFlag

BLOBSTATSFLAG;

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

Notes Blob statistics are divided into groups. The
following code fragments show the individual
statistics in each group:

//Always calculate these
//parameters
float fParentNumOfPixels;
float fTotalNumOfPixels;
float fNumOfChildren;

//Centroid Group
float fParentXCentroid;
float fParentYCentroid;
float fParentSumX;
float fParentSumY;
float fTotalXCentroid;
float fTotalYCentroid;
float fTotalSumX;
float fTotalSumY;

//Area Group
float fParentArea;
float fROIArea;
float fParentAreaToROIRatio;
float fChildArea;
float fTotalArea;
float fChildRatio;
float fTotalAreaToROIRatio;

//Min-Max Group
float fMaxX;
float fMaxY;
float fMinX;
float fMinY;
float fYatMaxX;
float fYatMinX;
float fXatMaxY;
339

Chapter 6

340
Notes (cont.) float fXatMinY;
float fXDifference;
float fYDifference;
float fBoundingBoxArea;
float fParentBoxRatio;
float fTotalBoxRatio;

//Pixel Averages Group
float fParentGrayAverage;
float fParentRedAverage;
float fParentGreenAverage;
float fParentBlueAverage;
float fParentGrayTotal;
float fParentRedTotal;
float fParentGreenTotal;
float fParentBlueTotal;
float fTotalGrayAverage;
float fTotalRedAverage;
float fTotalGreenAverage;
float fTotalBlueAverage;
float fTotalGrayTotal;
float fTotalRedTotal;
float fTotalGreenTotal;
float fTotalBlueTotal;

//Axis group
float fMajorAxisAngle;
float fMinorAxisAngle;
float fMajorAxis;
float fMinorAxis;
float fAxisRatio;
float fTotalSumXX;
float fTotalSumXY;
float fTotalSumYY;
float fParentSumXX;

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetBlobStatsFlags

Notes (cont.) float fParentSumXY;
float fParentSumYY;

//Perimeter group
float fPerimeter;
float fXPerimeter;
float fYPerimeter;
float fRoundness;
float fPPDA;

//Radius group
float fAvgRadius;
float fMaxRadius;
float fMinRadius;
float fCDistance;
float fMaxRadiusAngle;
float fDiffRadiusAngle;
float fRadiusRatio;

For increased speed, only those statistics in
the enabled group are calculated when
growing blobs.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax BLOBSTATSFLAG*
GetBlobStatsFlags();

Include File C_Blob.h

Description Returns the blob statistics group flags.

Parameters None
341

Chapter 6

342
SetRemoveBoundaryBlobFlag

Notes The BlobStatsFlag structure is defined as
follows:

struct BlobStatsFlag
{
BOOL bDoCentroid;
BOOL bDoArea;
BOOL bDoMinMax;
BOOL bDoPixelValue;
BOOL bDoAxis;
BOOL bDoPerimeter;
BOOL bDoRadius;
}
typedef struct BlobStatsFlag

BLOBSTATSFLAG;

Return Values

A NULL pointer. Unsuccessful.

A pointer to the
BLOBSTATSFLAG structure.

Successful.

Syntax int SetRemoveBoundaryBlobFlag(
int iRemove);

Include File C_Blob.h

Description Specifies whether or not to remove boundary
blobs.

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

GetRemoveBoundaryBlobFlag

Parameters

Name:

Description:

iRemove

Sets the boundary blob flag to one of the
following:

• 1 − Removes boundary blobs.

• 0 − Does not remove boundary blobs.

Notes None

Returned Value

−1 Unsuccessful.

0 Successful.

Syntax int GetRemoveBoundaryBlobFlag(
void);

Include File C_Blob.h

Description Returns the flag that determines whether or
not to remove boundary blobs.

Parameters None

Notes None

Returned Value

1 The flag is set to remove boundary blobs.

0 The flag is set not to remove boundary blobs.
343

Chapter 6

344
Example Program Using the Blob
Analysis Tool API

This example program takes a binary mask image (CImageMask) and
find all the blobs greater than 30 pixels in the given ROI (CRoi). The
roundest blob’s value (considering parents only) is returned.

Note: This example is made from code fragments from the Blob
Analysis tool with error checking removed. In an actual program,
you should check return values and pointers.

float FindRoundestBlob(CcImage* CImageIn,
CcBinaryImage* CImageMask, CcRoiBase* CRoi)

{
CcList* CListBlob;
//List of child blobs found by the CcBlobFinder
class
int x;
float fRoundness;
CcBlob* CBlob;
STBLOBSTATS* stInfo;

//Check type of Mask image to be a Binary image
if(CImageMask->GetImageType() !=
IMAGE_TYPE_BINARY)
 {
 ::MessageBox(::GetFocus(),"The Mask Image must be

 a Binary Image","Error",MB_OK);
 return(-1);
 }

Using the Blob Analysis Tool API

6

6

6

6

6

6

6

6

6

//Check type of ROI to be a Rectangular ROI
if(CRoi->GetROIType() != ROI_RECT)
 {::MessageBox(::GetFocus(),"ROI must be a

Rectangular ROI","Error",MB_OK);
 return(-1);}

//FIND BLOBS
//Create a new blob finder class
CcBlobFinder* CBlobFinder = new CcBlobFinder();
//Set blob parameters
CBlobFinder->SetMinBlobSize(30);

//Do all the blob stats

//Set Blob statistic group flag
BLOBSTATSFLAG GroupFlag;
GroupFlag.bDoCentroid = TRUE;
GroupFlag.bDoArea = TRUE;
GroupFlag.bDoMinMax = TRUE;
GroupFlag.bDoPixelValue = TRUE;
GroupFlag.bDoAxis = TRUE;
GroupFlag.bDoPerimeter = TRUE;
GroupFlag.bDoRadius = TRUE;
CBlobFinder->SetBlobStatsFlags(&GroupFlag);

//Find
CBlobFinder->GrowBlobs(CImageIn,CImageMask,

(RECT*)CRoi->GetRoiImageCord());
//Get pointer to list of found blobs
CListBlob = CBlobFinder->GetBlobList();
//Free memory for blob finder class
delete CBlobFinder;
 //Find Roundest blob - search parent blobs only
fRoundness = -1;
for(x=0; x<CListBlob-> GetNumberOfObjects(); x++)
 {
345

Chapter 6

346
//Get next blob in list - do not forget to cast
pointer!

CBlob = (CcBlob*)CListBlob->GetAtIndex(x);
//Calculate all information for blob
CBlob-> CalculateAllInfo();
//Get pointer to information structure
stInfo = CBlob-> GetBlobStats();
//Save roundest blob value
if(fRoundness < stInfo-> fRoundness)
 fRoundness = stInfo-> fRoundness;

}
//Free memory created by CcBlobFinder class
//Set Destruction type to delete all elements in
the list
CListBlob->SetDestructionType(LIST_DELETE_ON_

DISTRUCTOR);
delete CListBlob;
return(fRoundness);
}

7
Using the Contour Classifier

Tool API
Introduction. 348

CcContour Methods. 352
347

Chapter 7

348
Introduction
The Contour Classifier tool is a C++ class that is designed to work
within the DT Vision Foundry environment. It is a general-purpose
classifier for enclosed contours and is meant to be used with the API
for the Blob Analysis tool. Refer to Chapter 6 starting on page 307 for
more information on the Blob Analysis tool API.

Contours extracted using the Blob Analysis tool are fed into the
Contour Classifier tool for the purpose of building contour catalogs
and classifying contours under test (using those catalogs).

Given the catalog and the contours under test, the Contour Classifier
tool produces the following results:

• The name of the catalog element that best matches the contour
under test,

• Three Euler angles (alpha, beta, and gamma) that describe the
rotation of the contour under test with respect to the contour in
the catalog (see Figure 2), and

• The score, which is a measurement of how good the match is
between the contour under test and the contour in the catalog.

Figure 2: Euler Angles Reported by the Contour Classifier Tool

Gamma

Beta

Alpha

Y

X

Z

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

The API for the Contour Classifier tool has one object only: the
CcContour class. This tool performs contour classifier operations on
one or more images (derived from class CcImage), and places the
result into an output image. It performs this operation with respect to
the given ROI (derived from class CcRoiBase).

The CcContour class uses a standard constructor and destructor and
the class methods listed in Table 19.

Table 19: CcContour Class Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcContour();

~CContour();

CcContour Class
Methods

void Set3Drotation(bool b3DRotation);

void SetAngleDelimiting (bool bAngleDelimiting);

void SetExtendedClassification(bool
bExtendedClassification);

bool SetComparisonDepth(int iComparisonDepth);

bool SetScale(float fScaleMin, float fScaleMax);

bool SetCenterAngleA(int iCenterAngleA);

bool SetCenterAngleB(int iCenterAngleB);

bool SetCenterAngleG(int iCenterAngleG);

bool SetNegAngleA(int iNegAngleA);

bool SetNegAngleB(int iNegAngleB);

bool SetNegAngleG(int iNegAngleG);

bool SetPosAngleA(int iPosAngleA);

bool SetPosAngleB(int iPosAngleB);

bool SetPosAngleG(int iPosAngleG);
349

Chapter 7

350
CcContour Class
Methods (cont.)

bool Get3DRotation(void);

bool GetAngleDelimiting(void);

bool GetExtendedClassification(void);

int GetComparisonDepth(void);

float GetScaleMin(void);

float GetScaleMax(void);

int GetCenterAngleA(void);

int GetCenterAngleB(void);

int GetCenterAngleG(void);

int GetNegAngleA(void);

int GetNegAngleB(void);

int GetNegAngleG(void);

int GetPosAngleA(void);

int GetPosAngleB(void);

int GetPosAngleG(void);

bool SetDelimiterString(char *cDelimiterString);

void CleanIUTList(void);

void CleanCatalog(void);

int GetResultsCount(void);

int GetCatalogCount(void);

int GetIUTCount(void);

bool SupplyContour(CcRoiBase *CRoi);

int GetError(void);

Table 19: CcContour Class Methods (cont.)

Method Type Method Name

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

CcContour Class
Methods (cont.)

bool BuildCatalog(void);

bool RebuildCatalog(void);

bool NameCatalogElements(char *pcString, int iStartIndex);

char *GetCatalogString(void);

bool SaveCatalog(char *cFileName);

bool LoadCatalog(char *cFileName);

void ClassifyContours(void);

STCATRESULT *GetResult(int iIndex);

CcImage *MakeImageOfCATList(void);

CcImage *MakeImageOfIUTList(void);

Table 19: CcContour Class Methods (cont.)

Method Type Method Name
351

Chapter 7

352
CcContour Methods
This section describes each method of the CcContour class in detail.

Set3Drotation

Syntax void Set3DRotation(bool b3DRotation);

Include Files C_Contour.h

Description Allows the contours under test to rotate in three
dimensions.

Parameters

Name:

Description:

b3DRotation

When TRUE, three dimensional rotation is allowed.
When FALSE, three dimensional rotation is not
allowed.

Notes The tool performs additional computations to classify
three-dimensional contours.

Return Values None

Example The following is a sample code fragment:

//Instantiate the contour class
CcContour m_CContour;

//Set everything to the defaults
//True is for 3D
m_stContOpt.b3DRotation =

m_CContour.Get3DRotation();

//Window settings
m_stContOpt.iAffineWindow =

m_CContour.GetAffineWindow();
m_stContOpt.iRotationWindow =

m_CContour.GetRotationWindow();

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

Example (cont.) //Post-processing approaches
//correlation is available only
//with the affine method
m_stContOpt.bAngleDelimiting=
 m_CContour.GetAngleDelimiting();
m_stContOpt.bExtendedClassification=
 m_CContour.GetExtendedClassification();

//post-processing operations
m_stContOpt.iEuclidianWindow =

m_CContour.GetEuclianWindow();
m_stContOpt.iComparisonDepth =

m_CContour.GetComparisonDepth();

//Angle delimiting
m_stContOpt.fScaleMin =

m_CContour.GetScaleMin();
m_stContOpt.fScaleMax =

m_CContour.GetScaleMax();

m_stContOpt.iCenterAngleA =
m_CContour.GetCenterAngleA();

m_stContOpt.iCenterAngleB =
m_CContour.GetCenterAngleB();

m_stContOpt.iCenterAngleG =
m_CContour.GetCenterAngleG();

m_stContOpt.iNegAngleA =
m_CContour.GetNegAngleA();

m_stContOpt.iNegAngleB =
m_CContour.GetNegAngleB();

m_stContOpt.iNegAngleG =
m_CContour.GetNegAngleG();
353

Chapter 7

354
Example (cont.) m_stContOpt.iPosAngleA =
m_CContour.GetPosAngleA();

m_stContOpt.iPosAngleB =
m_CContour.GetPosAngleB();

m_stContOpt.iPosAngleG =
m_CContour.GetPosAngleG();

mCContour.Set3DRotation(m_stContOpt.
b3DRotation);

mCContour.SetExtendedClassification
(m_stContOpt.bExtendedClassification);

mCContour.SetAffineWindow(m_stContOpt.
iAffineWindow);

mCContour.SetRotationWindow(m_stContOpt.
iRotationWindow);

mCContour.SetAngleDelimiting(m_stContOpt.
bAngleDelimiting);

mCContour.SetEuclidianWindow(m_stContOpt.
iEuclidianWindow);

mCContour.SetComparisonDepth(m_stContOpt.
iComparisonDepth);

mCContour.SetScale(m_stContOpt.
fScaleMin, m_stContOpt.fScaleMax);

mCContour.SetCenterAngleA(m_stContOpt.
iCenterAngleA);

mCContour.SetCenterAngleB(m_stContOpt.
iCenterAngleB);

mCContour.SetCenterAngleG(m_stContOpt.
iCenterAngleG);

mCContour.SetNegAngleA(m_stContOpt.
iNegAngleA);

mCContour.SetNegAngleB(m_stContOpt.
iNegAngleB);

mCContour.SetNegAngleG(m_stContOpt.
iNegAngleG);

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

SetAngleDelimiting

SetExtendedClassification

Example (cont.) mCContour.SetPosAngleA(m_stContOpt.
iPosAngleA);

mCContour.SetPosAngleB(m_stContOpt.
iPosAngleB);

mCContour.SetPosAngleG(m_stContOpt.
iPosAngleG);

mCContour.SetDelimiterString(m_stContOpt.
cDelimiterString);

Syntax void SetAngleDelimiting(bool
bAngleDelimiting);

Include Files C_Contour.h

Description Allows the Contour Classifier tool to use the angle and
scale preferences.

Parameters

Name:

Description:

bAngleDelimiting

When TRUE, the tool uses the angle and scale
preferences. When FALSE, the tool does not use the
angle and scale preferences.

Notes None

Return Values None

Example See the example on page 352.

Syntax void SetExtendedClassification(bool
bExtendedClassification);

Include Files C_Contour.h
355

Chapter 7

356
SetComparisonDepth

Description Allows the Contour Classifier tool to use extended
classification.

Parameters

Name:

Description:

bExtendedClassification

When TRUE, the tool uses extended classification.
When FALSE, the tool does not use extended
classification.

Notes This option is available only if three-dimensional
processing is turned on. Refer to page 352 for more
information.

Return Values None

Example See the example on page 352.

Syntax bool SetComparisonDepth
(int iComparisonDepth);

Include Files C_Contour.h

Description Specifies how many contours in the post-processing
stage are used for the comparison/search operation.

Parameters

Name:

Description:

iComparisonDepth

The number of contours used in the extended
classification. Values range from 1 to 5; 1 is the default.

Notes Larger values for iComparisonDepth extend the
processing time.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

SetScale

Return Values

TRUE The value was between 1 and 5.

FALSE The value was invalid.

Example See the example on page 352.

Syntax bool SetScale(float fScaleMin, float
fScaleMax);

Include Files C_Contour.h

Description Specifies how much to scale the contours under test.

Parameters

Name:

Description:

fScaleMin

The minimum scale factor. Values range from 0.01 to 5;
1.0 is the default.

Name:

Description:

fScaleMax

The maximum scale factor. Values range from 0.01 to 5;
1.0 is the default.

Notes None

Return Values

TRUE The values are valid and fScaleMin is less than
fScaleMax.

FALSE Value is invalid.
357

Chapter 7

358
SetCenterAngleA

Example If a contour under test is twice as large as the contour in
the catalog, and fScaleMin=0.1 and fScaleMax=1.5, then
the contour is not classified.

See the example on page 352 for an example of using
this method.

Syntax bool SetCenterAngleA(int iCenterAngleA);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
center of the alpha angle.

Parameters

Name:

Description:

iCenterAngleA

The number of degrees of rotation for the center of
alpha angle. Values range from −180 to 180; 0 is the
default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

SetCenterAngleB

SetCenterAngleG

Syntax bool SetCenterAngleB(int iCenterAngleB);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
center of the beta angle.

Parameters

Name:

Description:

iCenterAngleB

The number of degrees of rotation for the center of the
beta angle. Values range from −180 to 180; 0 is the
default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetCenterAngleG(int iCenterAngleG);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
center of the gamma angle.
359

Chapter 7

360
SetNegAngleA

Parameters

Name:

Description:

iCenterAngleG

The number of degrees of rotation for the center of the
gamma angle. Values range from −180 to 180; 0 is the
default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetNegAngleA(int iNegAngleA);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
negative-going part of the alpha angle.

Parameters

Name:

Description:

iNegAngleA

The number of degrees of rotation for the
negative-going part of the alpha angle. Values range
from −180 to 0; 0 is the default.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7
SetNegAngleB

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetNegAngleB(int iNegAngleB);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
negative-going part of the beta angle.

Parameters

Name:

Description:

iNegAngleB

The number of degrees of rotation for the
negative-going part of the beta angle. Values range
from −180 to 0; 0 is the default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.
361

Chapter 7

362
SetNegAngleG

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetNegAngleG(int iNegAngleG);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
negative-going part of the gamma angle.

Parameters

Name:

Description:

iNegAngleG

The number of degrees of rotation for the
negative-going part of the gamma angle. Values range
from −180 to 0; 0 is the default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

SetPosAngleA

SetPosAngleB

Syntax bool SetPosAngleA(int iPosAngleA);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
positive-going part of the alpha angle.

Parameters

Name:

Description:

iPosAngleG

The number of degrees of rotation for the
positive-going part of the alpha angle. Values range
from 0 to 180; 0 is the default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetPosAngleB(int iPosAngleB);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
positive-going part of the beta angle.
363

Chapter 7

364
SetPosAngleG

Parameters

Name:

Description:

iPosAngleB

The number of degrees of rotation for the
positive-going part of the beta angle. Values range from
0 to 180; 0 is the default.

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax bool SetPosAngleG(int iPosAngleG);

Include Files C_Contour.h

Description Specifies the number of degrees of rotation for the
positive-going part of the gamma angle.

Parameters

Name:

Description:

iPosAngleG

The number of degrees of rotation for the
positive-going part of the gamma angle. Values range
from 0 to 180; 0 is the default.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7
Get3Drotation

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values

TRUE The value is valid.

FALSE A value is invalid.

Example See the example on page 352.

Syntax void Get3DRotation(bool b3DRotation);

Include Files C_Contour.h

Description Returns whether the contours under test can rotate in
three-dimensions.

Parameters

Name:

Description:

b3DRotation

When TRUE, three-dimensional rotation is allowed.
When FALSE, three-dimensional rotation is not
allowed.

Notes The tool performs additional computations to classify
three-dimensional contours.

Return Values None

Example See the example on page 352.
365

Chapter 7

366
GetAngleDelimiting

GetExtendedClassification

Syntax bool GetAngleDelimiting(void);

Include Files C_Contour.h

Description Returns whether the angle and scale preferences are
used.

Parameters None

Notes None

Return Values

TRUE Uses angle and scale preferences.

FALSE Ignores angle and scale preferences.

Example See the example on page 352.

Syntax bool GetExtendedClassification(void);

Include Files C_Contour.h

Description Returns whether extended classification is used.

Parameters None

Notes This option is available only if three-dimensional
processing is turned on. Refer to page 352 for more
information.

Return Values

TRUE The tool uses extended classification.

FALSE The tool does not use extended classification.

Example See the example on page 352.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

GetComparisonDepth

GetScaleMin

Syntax int GetComparisonDepth(void);

Include Files C_Contour.h

Description Returns the number of contours that are used for the
comparison/search operation.

Parameters None

Notes Larger values for iComparisonDepth extend the
processing time.

Return Values The number of contours used in the extended
classification. Values range from 1 to 5; 1 is the default.

Example See the example on page 352.

Syntax float GetScaleMin(void);

Include Files C_Contour.h

Description Returns the minimum scale factor for the contours
under test.

Parameters None

Notes None

Return Values The minimum scale factor. Values range from 0.01 to 5;
1.0 is the default.

Example See the example on page 352.
367

Chapter 7

368
GetScaleMax

GetCenterAngleA

Syntax float GetScaleMax(void);

Include Files C_Contour.h

Description Returns the maximum scale factor for the contours
under test.

Parameters None

Notes None

Return Values The maximum scale factor. Values range from 0.01 to 5;
1.0 is the default.

Example See the example on page 352.

Syntax int GetCenterAngleA(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the center
of the alpha angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the center of
alpha angle. Values range from −180 to 180; 0 is the
default.

Example See the example on page 352.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

GetCenterAngleB

GetCenterAngleG

Syntax int GetCenterAngleB(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the center
of the beta angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the center of the
beta angle. Values range from −180 to 180; 0 is the
default.

Example See the example on page 352.

Syntax int GetCenterAngleG(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the center
of the gamma angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.
369

Chapter 7

370
GetNegAngleA

GetNegAngleB

Return Values The number of degrees of rotation for the center of the
gamma angle. Values range from −180 to 180; 0 is the
default.

Example See the example on page 352.

Syntax int GetNegAngleA(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
negative-going part of the alpha angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the
negative-going part of the alpha angle. Values range
from −180 to 0; 0 is the default.

Example See the example on page 352.

Syntax int GetNegAngleB(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
negative-going part of the beta angle.

Parameters None

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7
GetNegAngleG

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the
negative-going part of the beta angle. Values range
from −180 to 0; 0 is the default.

Example See the example on page 352.

Syntax int GetNegAngleG(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
negative-going part of the gamma angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the
negative-going part of the gamma angle. Values range
from −180 to 0; 0 is the default.

Example See the example on page 352.
371

Chapter 7

372
GetPosAngleA

GetPosAngleB

Syntax int GetPosAngleA(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
positive-going part of the alpha angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the
positive-going part of the alpha angle. Values range
from 0 to 180; 0 is the default.

Example See the example on page 352.

Syntax int GetPosAngleB(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
positive-going part of the beta angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

GetPosAngleG

SetDelimiterString

Return Values The number of degrees of rotation for the
positive-going part of the beta angle. Values range from
0 to 180; 0 is the default.

Example See the example on page 352.

Syntax int GetPosAngleG(void);

Include Files C_Contour.h

Description Returns the number of degrees of rotation for the
positive-going part of the gamma angle.

Parameters None

Notes Contours which fall within this number of degrees are
classified before contours that are not within this
number of degrees.

Refer to Figure 2 on page 348 for an illustration of this
angle.

Return Values The number of degrees of rotation for the
positive-going part of the gamma angle. Values range
from 0 to 180; 0 is the default.

Example See the example on page 352.

Syntax bool SetDelimiterString(char
*cDelimiterString);

Include Files C_Contour.h

Description Specifies the delimiter for the string that is supplied to
the Contour Classifier tool and for the strings that are
returned from the Contour Classifier tool.
373

Chapter 7

374
CleanIUTList

CleanCatalog

Parameters

Name:

Description:

cDelimiterString

A pointer to a delimiter string.

Notes The delimiter can be any character or multiple
characters.

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example See the example on page 352.

Syntax void CleanIUTList(void);

Include Files C_Contour.h

Description Clears the list of contours under test.

Parameters None

Notes None

Return Values None

Example CleanIUTList();

Syntax void CleanCatalog(void);

Include Files C_Contour.h

Description Clears the list of contours in the catalog.

Parameters None

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

GetResultsCount

GetCatalogCount

Notes None

Return Values None

Example CleanCatalog();

Syntax int GetResultsCount(void);

Include Files C_Contour.h

Description Returns the number of results that are available.

Parameters None

Notes None

Return Values The number of results.

Example //Instantiate the contour class
CcContour m_CContour;
int iNumOfResults;

iNumOfResults =
m_CContour.GetResultsCount();

Syntax int GetCatalogCount(void);

Include Files C_Contour.h

Description Returns the number of elements that are in the catalog.

Parameters None

Notes None

Return Values The number of elements in the catalog.
375

Chapter 7

376
GetIUTCount

SupplyContour

Example //Instantiate the contour class
CcContour m_CContour;
int iNumOfElements;

iNumOfElements =
m_CContour.GetCatalogCount();

Syntax int GetIUTCount(void);

Include Files C_Contour.h

Description Returns the number of contours that are under test.

Parameters None

Notes None

Return Values The number of contours under test.

Example //Instantiate the contour class
CcContour m_CContour;
int iNumOfElements;

iNumOfElements =
m_CContour.GetIUTCount();

Syntax bool SupplyContour(CcROIBase *CRoi);

Include Files C_Contour.h

Description Adds a contour to the list of contours under test.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

GetError

Parameters

Name:

Description:

CRoi

A pointer to an ROI that describes the contour.

Notes The ROI must be a freehand type.

Return Values

TRUE The operation was successful.

FALSE The operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;
CcROIBase *pCRoi;

bResult = m_CContour.SupplyContour(pROI);

Syntax int GetError(void);

Include Files C_Contour.h

Description If an error occurs during the SupplyContour method,
returns the error code.

Parameters None

Notes None.

Return Values The error code from the header file.

#define E_SLIVER
0x0001

Supplied contour has a pixel width or height of 1.

#define
E_NUM_PIX_

EXCEEDED 0x0002

Supplied contour has more than 4096 points. 4096 is the
maximum number of points for the input contours.
377

Chapter 7

378
BuildCatalog

Return Values
(cont.)

The error code from the header file.

#define
E_NULL_POINTER

0x0003

An invalid input ROI was specified.

Example //Instantiate the contour class
CcContour m_CContour;
int iError;

iError = m_CContour.GetError();

Syntax bool BuildCatalog(void);

Include Files C_Contour.h

Description Adds contours to the catalog.

Parameters None

Notes Use this method after you add the contour to the
contours under test using SupplyContour (see page
376).

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;

bResult = m_CContour.BuildCatalog();

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

RebuildCatalog

NameCatalogElements

Syntax bool RebuildCatalog(void);

Include Files C_Contour.h

Description Reinitializes the existing catalog.

Parameters None

Notes Use this method after you change any of the parameters
for the contour classification.

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;

bResult = m_CContour.RebuildCatalog();

Syntax bool NameCatalogElements(char *pcString,
int iStartIndex);

Include Files C_Contour.h

Description Names or renames the catalog elements, beginning at a
specified element in the catalog.

Parameters

Name:

Description:

pcString

String with the elements separated by the delimiters.

Name:

Description:

iStartIndex

Index of the element from which to start naming.
379

Chapter 7

380
GetCatalogString

Notes The element names should be separated by the
delimiter that was specified by the SetDelimiterString
method.

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;
char cNames[50];

//Assume there are 3 elements in
//the catalog
strcpy(cNames, “A,B,C”);

//Name all the elements starting
//from element 0
bResult = m_CContour.NameCatalogElements(

cNames, 0);

Syntax char *GetCatalogString(void);

Include Files C_Contour.h

Description Returns a pointer to an allocated string that is filled
with the names of the catalog elements.

Parameters None

Notes You must deallocate the string once you have used it.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7
SaveCatalog

Return Values

Pointer to a string. Operation succeeded. The string contains the element
names separated by the delimiter.

NULL Unable to return the string pointer.

Example //Instantiate the contour class
CcContour m_CContour;
char *pcString;

pcString = m_CContour.GetCatalogString(
void);

Syntax bool SaveCatalog(char *cFileName);

Include Files C_Contour.h

Description Saves the catalog to a file.

Parameters

Name:

Description:

cFilename

Name of the file in which to store the catalog.

Notes None

Return Values

TRUE Operation was successful.

FALSE Operation failed.
381

Chapter 7

382
LoadCatalog

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;
char cMydata[200];

bResult = m_CContour.SaveCatalog(
cMydata);

Syntax bool LoadCatalog(char *cFileName);

Include Files C_Contour.h

Description Loads the catalog from a file.

Parameters

Name:

Description:

cFilename

Name of the file from which to load the catalog.

Notes None

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
bool bResult;
char cMydata[200];

bResult = m_CContour.LoadCatalog(
cMydata);

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7

ClassifyContours

GetResult

Syntax void ClassifyContours(void);

Include Files C_Contour.h

Description Classifies contours by trying to match contours under
test with contours stored in the catalog.

Parameters None

Notes None

Return Values None

Example //Instantiate the contour class
CcContour m_CContour;

m_CContour.ClassifyContours();

Syntax STCATRESULT *GetResult(int iIndex);

Include Files C_Contour.h

Description Returns classification information starting from a
specified element in the results list.

Parameters None

Notes The first element in a new list is 0.

The STCATRESULT structure, which is defined as
follows:

struct stResultTag
{
//Name of matching element
CString CElementName;
//Match confidence measure
double dScore;
383

Chapter 7

384
MakeImageOfCATList

Notes (cont.) //Scale
float fScale;
//Rotation in the XY Plane
float fAlpha;
//Rotation in the ZX Plane
float fBeta;
//Rotation in the YZ Plane
float fGamma;
}
typedef stResultTag STCATRESULT;

Return Values

Pointer to a results
structure.

 Operation succeeded.

NULL Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
STCATRESULT *pstResult;

//Get the results for the third contour
pstResult = m_CContour.GetResult(3);

Syntax CcImage *MakeImageOfCATList(void);

Include Files C_Contour.h

Description Returns an 8-bit grayscale bitmap image containing all
the catalog elements.

Parameters None

Notes This method is meant to be used in a graphical user
interface. You are responsible for deallocating this
image.

Using the Contour Classifier Tool API

7

7

7

7

7

7

7

7

7
MakeImageOfIUTList

Return Values

Pointer to an image. Operation was successful.

NULL Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
CcImage *pImage;

//Get the results for the third contour
pImage = m_CContour.MakeImageOfCATList();

Syntax CcImage *MakeImageOfIUTList(void);

Include Files C_Contour.h

Description Returns an 8-bit grayscale bitmap image containing all
the contours under test.

Parameters None

Notes This method is meant to be used in a graphical user
interface. You are responsible for deallocating this
image.

Return Values

Pointer to an image. Operation was successful.

NULL Operation failed.

Example //Instantiate the contour class
CcContour m_CContour;
CcImage *pImage;

//Get the results for the third contour
pImage = m_CContour.MakeImageOfIUTList();
385

Chapter 7

386

8
Using the Custom Script Tool

API
Introduction. 388

Restrictions . 407

Keywords and Functions . 408
387

Chapter 8

388
Introduction
The Custom Script tool was created as a general-purpose
programming tool for nonprogrammers. Emphasis is placed on
performing a number of complex tasks very easily. In keeping with
the ease-of-use philosophy, the Custom Script tool is a program
interpreter rather than a compiler. Interpreters are programs that read
commands as text, executing them as encountered. To change a
program requires editing the command or program file only.

Compilers, on the other hand, read program text files and write a file
of computer instructions to disk. Changes to compiled programs are
more time consuming and the level of knowledge to create even
simple tasks is many magnitudes greater than that of a Custom Script
program. However, compiled programs offer a slight program
performance and also offer a much wider range of programming
possibilities. If you wish to create a compiled program, see the DT
Vision Foundry API, described in Chapter 2 starting on page 11. The
DT Vision Foundry API is an object-oriented API that you can use
with Visual C/C++.

As an interpreted programming language, the Custom Script tool
processes instructions one line at a time directly from the program
file. Minimal processing is done to check for errors in logic or syntax,
since speed is always a major concern in imaging applications.
Generally speaking, interpreters, such as the Custom Script tool and
the BASIC interpreter, which comes with most PCs, are easier to use
and more forgiving than programs that are processed in other ways.
Therefore, most novice and casual programmers find working with
an interpreter less frustrating and more productive. Some loss of
capabilities and speed occurs as compared to programs that are
compiled, but when used appropriately, these conditions have little
or no impact. Experience will determine which method is better for
your use.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

The Custom Script tool provides the following features:

• It is easy to use and understand;

• It is flexible;

• It provides minimal error checking;

• It provides automatic conversion from one data type to another
(see page 390); and

• It provides simplified interfaces for vision and motion.

Anatomy of a Typical Custom Script Program

The Custom Script tool features items such as structured blocks, flow
control, variable data types, and a file management system. A unique
command set consisting of keywords and functions is provided for
fast code execution and for performing a wide variety of tasks.

The Custom Script tool allows for global variables, redefineable data
types, automatic redimensioning, and dynamic label creation. Data
types can be declared anywhere in the main body of the program or
in subroutines. Variable types can be explicitly declared or can be
defined by first usage, as follows:

X = REAL ! Explicit real
I = 5 ! Implicit integer
S = "TEXT" ! Implicit string

Variables can be either uppercase or lowercase. Names of keywords
and functions form a reserved word list and cannot be used as data
variables in the body of the program. Singly subscripted arrays can
be declared by using brackets []. The first subscript always begins
with 0 and the value contained in the declaration statement
determines the maximum size, shown as follows:

X[4] = INTEGER
389

Chapter 8

390
In this example, X is an array of four integers whose subscripts are 0,
1, 2, and 3. One very important feature to note is that any reference to
a subscript that is out of bounds for the current maximum array
element resizes the array and reinitialize all elements, in this case to 0.
A reference to X[4] in the example resizes the X array to 5 elements
and sets X[0] through X[3] to 0.

Custom Script programs look much like BASIC programs and
usually have one statement of code per line. Exclamation points
define a comment statement. Programs are executed by selecting the
Custom Script tool from the DT Vision Foundry Miscellaneous
toolbar, and then entering the script file name.

Because the Custom Script tool ignores white space (tabs, blanks, and
line breaks) in your program file, you have the freedom to arrange
your code in almost any style. However, most programmers follow a
few de facto rules that have evolved to promote readability. A typical
program file must have one complete statement per line. It is
common practice to indent statements inside looping functions so
they are vertically aligned. Directives may also be given to the
Custom Script tool to perform nonexecutable functions, such as
including files.

Data Types

Unfortunately, computers and computer languages are not very
intelligent. For example, we know that the number one can be
represented as either a 1 or 1.0 or 1.00. To a computer, 1 and 1.0 are
two distinctly different types of data. A whole number is an integer
data type. An integer falls into the range of +32767 to –32768. If the
whole number is larger than this, the data type is a long. A long data
type has a range of +2147483647 to –2147483648. Numbers larger than
this or numbers containing decimal points are called real numbers.
Characters are represented by the string data type. Textlists are arrays
of strings. There is also a file pointer data type, called FILE, which is
used internally, and a data type for hexadecimal numbers, called
HEXNUM, which can be declared by using a dollar sign ($).

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

These basic data types and their sizes are summarized as follows:

• UNSIGNED − ! 16 bits

• INTEGER − ! 16 bits

• LONG − ! 32 bits

• REAL − ! 64 bits

• STRING − ! Variable

• TEXTLIST − ! Variable

• FILE − ! Internal use only

• HEXNUM − ! 8 characters, $FFFFFFFF

In the Custom Script tool, most of the transactions between data
types are transparent to both the programmer and the operator. This
is done according to the following set of rules:

• Explicitly programmed data is converted to the INTEGER data
type if the data does not begin and end with a double quote, does
not contain a period, does not start with a $, and contains only
numbers.

• If the data begins and ends with a double quote, or has no quotes
but has characters other than numbers, the data is converted to
the STRING data type.

• If the data starts with $, the data is converted to the HEXNUM
data type.

• If no beginning and ending double quotes are present, and the
data consists of a period and numbers only, the data is converted
to the REAL data type.

• If a variable is used for the first time, the variable is set to the type
of data being assigned to it. (See the first rule.)
391

Chapter 8

392
• If a variable is being assigned a value either through another
variable, an intrinsic function, or from an explicitly programmed
value and this variable already has a data type, then the incoming
data is converted to the same type as the declared variable. For
example, if variable S$ is of type STRING, S$ = “Result:” +
(14.2*4) ends up as a the following string of text stored in the
variable S$: Result: 56.8.

• Data can be lost or truncated when converting from a large data
type to a smaller data type, such as LONG to INTEGER or REAL
to LONG, or REAL to INTEGER.

• Data type setting for variables can be done at any time to
specifically set the desired data type. To set a variable type,
simply assign to it one of the supported data types. For example:
num = REAL sets the data type to REAL for the variable num and
removes any data that may have been stored in num. The variable
num can be an existing variable of a different data type.

• A colon (:) indicates labels. Labels must be the first and only text
on a line. Label names following a GOTO or a GOSUB function
can be computed by enclosing the expression in parentheses, but
the final evaluation must be a character string.

Operators

The Custom Script tool supports three basic groups of operators:

• Math,

• Logic, and

• String.

These operators are described in more detail in the following
subsections.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

Math Operators

Table 20 lists the math operators used by the Custom Script tool.

Operators &, |, ~, @, SHR, and SHL are referred to as bitwise
operators using Base 2. Table 21 shows examples for each of these
operators.

Table 20: Math Operators

Operator Sample Description

+ X+Y Addition

- X-Y Subtraction

* X*Y Multiplication

/ X/Y Division

^ X^2 Exponentiation

& X&Y Bitwise AND

¾ X Y Bitwise OR

~ ~X Bitwise complement

@ X @ Y Bitwise exclusive OR

SHR X SHR Y X-shifted right by Y-positions (e.g. 8 SHR 2=2)

SHL X SHL Y X-shifted left by Y-positions (e.g. SHL 4=32)
393

Chapter 8

394
Like other languages, the Custom Script tool has precedence rules
that determine the order of evaluations in expressions that contain
more than one operator. Here are the general rules:

• When two operators have unequal precedence, the operator with
the higher precedence is evaluated first.

• Operators with equal precedence are evaluated from left to right.

• You can change the normal order of precedence by enclosing an
expression in parentheses.

When constructing calculations, it is important to consider exactly
how the calculation should be done. By default, the Custom Script
tool finds the inner most group of parentheses, solves that part of the
calculation, and then moves on to the next inner most set of
parentheses. When no more parentheses are found, the expression is
processed from left to right, extracting the higher-order operators
first for solution. This extraction process is called operator
precedence. All math operators and all logical operators (see page
395) are assigned a precedence level. When processing a calculation,
the significance or precedence determines the order of solution of
each individual operator. Table 22 lists the five levels of precedence
and the operators that are contained within each level.

Table 21: Examples of Bitwise Operators

Bitwise Operator Example

& 9 & 5 = 1

| 3 8 = 11

@ 11 @ 3 = 8

SHR 64 SHR 2 = 16

SHL 8 SHL 3 = 64

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8
By examining how a given calculation should be solved, you can
insert parentheses into the expression to force the Custom Script tool
to solve the calculation in the intended manner.

For example, 2 + 3 * 3 and (2 + 3) * 3 results in 15. However, 2 + (3 * 3)
results in 11, since multiplication is done first. Whenever in doubt,
include parentheses.

Note: Do not rely on operator precedence alone for correct
expression evaluations.

Logical Operators

Table 23 lists the logical operators used in the Custom Script tool.

Table 22: Operator Precedence

Level of
Precedence Operator

Level 1 ~ NOT

Level 2 + - * / ^

Level 3 & | @

Level 4 < > = <= >= <>

Level 5 AND OR SHR SHL IN
395

Chapter 8

396
Logical operators evaluate to a TRUE or FALSE result. The Custom
Script tool treats 0 as FALSE and any nonzero value as TRUE. As
shown in Table 22 on page 395, logical operators are among the last
operators to be examined when evaluating an expression.

Although not always true, these operators are usually used as part of
a conditional branching statement, IF (...) THEN, where the
expression between the parentheses contains one or more logical
operators. Some examples of usage are as follows:

IF (4>5) THEN! Hopefully this won’t print.
MESSAGEBOX("4 IS GREATER THAN 5!!", "CUSTOM

SCRIPT", MB_OK)
IF (X and Y) THEN
! Do if both X and Y are not zero GOTO DONE
! (0). TRUE can be a negative number or even a
! fraction.

Table 23: Logical Operators

Operator Description

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

= Equal

<> Not equal

AND Logical and

OR Logical or

NOT Logical not

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

IF(NOT EXIST(“SOMEFILE.DAT”)) THEN
MESSAGEBOX("FILE NOT FOUND","CUSTOM SCRIPT",MB_OK)
! Operators and keywords that return a value can be
! part of an expression. NOT is a single or UNARY
! operator. When using NOT with other logical
! operators, the other operator ALWAYS precedes the
! NOT. For example: X AND NOT Y is okay. However,
! X NOT AND Y is incorrect.

String Operators

Some special features were incorporated into the Custom Script tool
to help manipulate strings. As just shown in the previous section,
logical comparison of strings is an intrinsic capability. In addition, the
plus (+) and minus (−) operators can also be used with strings. The
plus sign is used to join or concatenate two or more strings. The
minus sign is used to “subtract” the second string from the first, if the
second string is in the first string.

For example: S= “I am” + “ happy to write this.” creates “I am happy
to write this.” in the variable S. Or, S = “This is happy work.” –
“happy” creates “This is work.” in the variable S. In addition, the
keyword INSTR extracts any portion of a string.

The Custom Script tool also allows each individual character of a
string to be read from or written to. By allowing this, characters can
be converted to or from lowercase or changed entirely. To achieve
this, the string is “subscripted” using the left and right brackets, [].
Between the brackets is the location in the string of the desired
character. The Custom Script tool starts subscript numbering at 0.
Therefore, if string variable S contains “TEST”, the first letter is
addressed as S[0], while the last letter is addressed as S[3].
397

Chapter 8

398
The value obtained when reading a subscripted string is an integer.
So, if the string variable S contains “APPLE”, then S[0] returns the
integer value 65. Consider the following examples:

Reading a string subscript.

S = “APPLE”
! I is now an integer variable with value 65
I = S[0]
! S[0] has the ASCII value of 65
MESSAGEBOX(“I=”,+I,"CUSTOM SCRIPT",MB_OK)
! This would print: I=65
MESSAGEBOX(“I=”,+CHR(I),"Custom Script",MB_OK)
! This would print: I=A

Writing to a subscript string variable also requires that an integer
value be used, since the Custom Script tool does not have a single
character type. Therefore, using the previous example, S[0]=97 results
in S containing “APPLE”.

Think of the S array as follows:

Table 24: The S Array

S Element External Internal

S[0] A 65

S[1] P 80

S[2] P 80

S[3] L 76

S[4] E 69

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

Two ways are provided to stay within the length of a string. The first
way is to obtain the string length using the keyword TEXTLEN or by
checking the value read from the subscripted variable. If that value is
0, then this is one place past the end of the string. The following two
sample programs convert a string variables’ lower case characters to
uppercase characters.

Case Conversion 2...

S = “This is the string to be converted to all uppercase.”

Case Conversion 1...

S = “This is the string to be converted to all uppercase.”

L = TEXTLEN(S)
POS=0

WHILE(POS<L)
! Remember the last position is length-1.

I=S[POS]
IF(I>96 OR I<123)THEN
! Is this a lower case letter?
 S[POS] = I-32

! Convert to upper case.
WEND POS = POS + 1
! Increment POS by one –Special WEND feature.

:DONE
! Finished – DONE is a label as shown by the leading
! colon.

POS=0

CAUTION:

It is imperative that no values are beyond the end of the string. Doing
so, could result in catastrophic results!
399

Chapter 8

400
REPEAT
I=S[POS]

IF(I>96 OR I<123)THEN
! Is this a lower case letter?
 S[POS] =I-32 ! Convert to upper case.
 POS = POS+1 ! Increment POS.

UNTIL(S[POS]=0)
! Zero is one position past the last character.

The first program uses the length function while the second checks
for a character value. Either method works fine, just be certain that
nothing is written past the end of the string.

As shown, both examples perform the same operation. To a great
degree, it is a matter of preference as to which method to use. The
Custom Script tool provides the function UPCASE to convert from
lowercase to uppercase letters.

Programming Considerations

This section describes things to consider when programming using
the Custom Script tool.

Expressions

An expression is any combination of operators, variables, functions,
and explicitly programmed values that return a value.

By way of definition, a variable is nothing more than a symbol that
contains information. The programer writing the Custom Script
program assigns variables. A variable is always assigned its value
with an equal sign. Variable name lengths can be 32 characters or less
(see page 390).

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

Some examples of variables are as follows:

NUMBER = 5 ! The value 5 is contained in the
!variable named NUMBER. Upper and lower case
!differences are ignored. So NUMBER, Number, and
! NUMber are all the same.

MESSAGEBOX("NUMBER =",+NUMBER,"CUSTOM SCRIPT",
MB_OK)

! This line displays NUMBER= 5. Because NUMBER was
! not used before, the data type associated with
! NUMBER is INTEGER. This is because the
! value assigned did not have a leading and
! trailing quote and no decimal point was used in
! the value.

Explicitly programmed values are written into the Custom Script
program. In the previous example, 5 is an explicit value.

Expressions always return a numerical value. Therefore, the result of
the expression can be assigned to a variable, used in another
expression, used by a keyword, or simply ignored. Expressions can
be simple, such as 1 + 1, or they may be very complex with several
groupings or parentheses. Custom Script executes faster when a
single complex expression is used, rather than a series of simple
expressions.

Expressions cannot exceed one text line. However, the Custom Script
tool can read a line that is up to 255 characters long. If the expression
being created is quite long, it may be necessary to split it into two or
more expressions. Be sure that the resulting expressions still achieve
what the correct operation. Sometimes it is easier to troubleshoot a
program when expressions do not get overly complex. Once you feel
confident that everything is working properly, combining some
expressions together may speed up performance or may help clarify
the program.
401

Chapter 8

402
Some examples of different expressions are as follows:

Program 1:

X=3
Y=5
Z=((X & Y) | 8) ^ 3
! This program results in 729. X & Y = 1. 1 | 8 = 9.
! Finally 9 ^ 3 = 729, i.e., 9 cubed.

Program 2:

SETDP (6) ! Set displayed decimal places to 6.
DEGREE = (2*PI)/360
! Get the number of radians in one degree.
MESSAGEBOX("DEGREE:"+DEGREE,"",MB_OK)
!Print the value on the screen.
ANGLE=30 ! Set ANGLE to 30 degrees.
NUM=SIN(ANGLE*DEGREE) ! Get the SIN of 30 degrees.
MESSAGEBOX("SINE OF"+ANGLE+":"+NUM,"",MB_OK)
! Print the answer. SIN OF 30:0.500000.

Program 3:

! This program demonstrates logical comparisons
! using strings.
! All comparisons are based upon lexicographical
! (alphabetical) comparisons. Refer to a standard
! ASCII chart when analyzing the results from a
! string comparison.
S1="AAAA"
S2="ZZZZZZZZZ"
MESSAGEBOX("S1=S2:"+(S1=S2),"",MB_OK)
! This prints: S1=S2:0
MESSAGEBOX("S1<S2:"+(S1<S2),"",MB_OK)
! This prints: S1<S2:1
MESSAGEBOX("S1>S2:"+(S1>S2),"",MB_OK)
! This prints: S1>S2:0

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

MESSAGEBOX("S1<>S2"+(S1<>S2),"",MB_OK)
! This prints: S1<>S2:1

As can be seen by these sample programs, expressions are used in a
variety of ways for a variety of purposes. Most often, expressions are
used for evaluation in an IF statement or as part of a MESSAGEBOX
statement when creating text to be displayed on the screen.

Branching

Branching stops program execution at the current line and restarts it
at the point specified. Two keywords are used for branching: GOTO
and GOSUB. GOTO is called an unconditional branch because it
changes the program flow without regard to where it came from. On
the other hand, GOSUB remembers the current program location and
returns to the next line after that point when the keyword RETURN
is encountered.

A label is any text that begins with a colon and contains any printable
ASCII character except a space. When using the label name after a
GOTO and GOSUB, a leading colon is not required. A GOTO and a
GOSUB can reference the same label.

The following example illustrates the use of GOTO and GOSUB:

!AN EXAMPLE OF GOTOS AND GOSUBS
IF(MESSAGEBOX("PRESS OK TO SKIP",

"CUSTOM SCRIPT",MB_OKCANCEL)=IDOK) THEN
 GOTO SKIP
ELSE
 GOSUB NO_SKIP
GOTO REDO
:NO_SKIP
 MESSAGEBOX("OK PRESSED","CUSTOM SCRIPT",MB_OK)
:SKIP
403

Chapter 8

404
Be sure the label exists or an error is generated. If a RETURN
keyword is encountered without a corresponding GOSUB, an error is
generated.

The location of the label does not matter. However, the Custom Script
tool does search forward to the end of the program and then
continues from the beginning to find the label. Therefore, if the
program is quite large, execution is slightly faster if the label is after
the branching statement.

Looping

Loops repeatedly execute the same lines of program statements until
some condition is satisfied. Two sets of keywords are used for loops:
REPEAT UNTIL and WHILE WEND. As shown in earlier examples,
these are two very useful functions.

The essential difference between REPEAT loops and WHILE loops is
REPEAT checks the conditional statement after performing one pass
through the loop and WHILE checks the conditional statement before
performing any loop statements.

Any valid program statements may be used within a loop, including
GOTO and GOSUB. When writing loops, just be sure that the loop
can be exited! Two short examples demonstrate the differences:

WHILE example:

I = 0
DONE=0 ! Initialize a terminal variable.
WHILE(NOT DONE)
 WHILE(I < 100)
 I = I + 1
 WEND
 DONE= (I > 100)
WEND ! WHILE end.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

REPEAT example:

I = 0
REPEAT ! Enter the loop.
 WHILE(I < 50) ! WHILE in REPEAT is okay.
 I = I + 1
 WEND
 DONE=(1 > 50)
UNTIL (DONE)! Check terminal variable.

In certain circumstances it is desirable or necessary to either
increment or decrement a variable by some value. In other
programming languages this is accomplished with a FOR .. NEXT
loop. Rather than adding additional keywords, the Custom Script
tool has added additional capability to the WEND keyword. If a valid
program statement follows the WEND keyword (on the same line),
that statement is executed. Normally, this statement would be used to
change the value of the variable, but it does not have to be used in
this manner.

The following example illustrates the use of the WEND function:

I=33 ! Set an initial value.
 WHILE(I<500) ! Check the value of I
 WEND I=I+25 ! Increment I by 25 each pass.

Some previous examples also demonstrate the use of WEND in this
manner. Be sure to initialize the terminal variable before starting the
loop.
405

Chapter 8

406
Date and Time

Two date keywords and two time keywords are provided for use in
your programs. DATE$ returns the current system date in text or
STRING form. The format is always year, month, and day. For
example, 20000101 is Jan 1, 2000. The STRING or text form of time is
TIME$. The clock is a 24-hour clock, so 1 p.m. is hour 13. The format
is: hhmmss. In other words, the text for 2:45 pm is 144500.

The numeric form for these two keywords are DATE and TIME. The
date is returned in the form yyyymmdd, such as 20000101 for Jan 1,
2000. The time is returned in the form hhmmss, such as 144500 for
2:45 pm.

Trigonometric Functions

Three trigonometric functions are available: SIN, COS, and TAN.
The value passed to these functions is an angle in radians. The value
returned is the sine, cosine, or tangent of that angle. The intrinsic
function PI is available to convert angles between radians and
degrees. (There are 2 PI radians in 360 degrees. One radian equals
360/(2*PI).)

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

Restrictions
Keep the following list in mind to avoid the common mistakes that
can be made when creating a Custom Script program:

• Output of a variable before assignment of any kind results in that
variable type to be defaulted to a real number.

• Since there is no level of hierarchy within any given level of
precedence, use parenthesis freely to force evaluation in the way
you intend it to be done. This is particularly true when using the
arithmetic functions.

• Remember that X[4] is a four deep array having subscripts 0, 1, 2,
and 3. Any reference beyond the maximum subscript, in this case
3, resizes the array to the new maximum value, and reinitialize all
previous values.

• Do not write characters beyond the end of a string variable as
adjacent memory locations may be overwritten. Certain functions
also rely on the last character of a given text string to be a 0.

• Code runs faster using complex expressions. Construct and
debug simple expressions, and then combine them.

• Be sure that the looping routines REPEAT and WHILE have a
legitimate path for them to exit. Failure to do this results in your
Custom Script program “hanging”.

• Make sure that all of your GOTOs point to a valid label: a text
name that is preceded by a colon. Failure to do this results in a
run-time error.
407

Chapter 8

408
Keywords and Functions
Table 25 briefly describes the keywords and functions used in the
Custom Script tool.

Table 25: Keywords and Functions of the Custom Script Tool

Function Type Function Name Description

Math Functions ABS Returns the absolute value of a
number.

COS Returns the cosine of a value.

SIN Returns the sine of a value.

TAN Returns the tangent of a value.

MEAN Returns the statistical mean of a
group of values.

MEDIAN Returns the statistical median of a
group of values.

KURTOSIS Returns the statistical kurtosis of a
group of values.

SIGMA Returns the statistical sigma of a
group of values.

SKEW Returns the statistical skew of a
group of values.

STD_DEV Statistical standard deviation of a
group of values.

PI Returns the value of PI.

SQRT Returns the square root of a value.

String Functions CHR Converts a number to a text
character.

IN Determines if one text string is
contained in another string.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

String Functions
(cont.)

INSTR Returns a text line that is a substring
of a string.

SETDP Assigns the number of decimal points
to be used when converting a
number to a string.

TEXTLEN Returns the number of characters in
a text string.

UPCASE Returns the uppercase of a text
string.

MESSAGEBOX Shows a standard message box.

Date and Time
Functions

DATE Returns the system’s date in numeric
format.

DATE$ Returns the system’s date in text or
string format.

TIME Returns the system’s time in numeric
format

TIME$ Returns the system’s time in text or
string format.

File Functions OPEN Opens a file for reading/writing.

CLOSE Closes a file.

READ Reads from a file.

WRITE Writes to a file.

EOF Test for the end of file condition.

EXIST Checks to see if a file exists.

ERASE Deletes a given file.

CHG_PATH Changes the default program
directory.

Table 25: Keywords and Functions of the Custom Script Tool

Function Type Function Name Description
409

Chapter 8

410
ABS

Program Flow Control
Functions

IF THEN ELSE Basic If – Then – Else Logic.

WHILE WEND Basic While-Wend Logic.

REPEAT UNTIL Basic Repeat-Until Logic.

GOSUB Calls a subroutine.

GOTO Performs a GoTo jump.

END Ends a program.

EXIT Exits from a program.

DELAY Delays a program for a given period.

RETURN Returns from a subroutine.

Data Logging
Functions

OPENLOGBOX Opens a log box for logging data.

CLOSELOGBOX Closes a log box.

WRITELOGBOX Writes text into a log box.

CLEARLOGBOX Clears a log box.

Syntax ABS(NUM)

Description Returns the absolute value of a number.

Parameters

Name:

Description:

NUM

Any valid number.

Example I = ABS(-3)! I = 3
R = ABS(-543.77)! R = 543.77
L = ABS(25)! L = 25

Table 25: Keywords and Functions of the Custom Script Tool

Function Type Function Name Description

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

COS

SIN

TAN

Syntax COS(angle)

Description Computes and returns the cosine of the given
angle.

Parameters

Name:

Description:

Angle

The angle, supplied in radians, for which you
want the cosine.

Example COS(PI) ! WILL RETURN –1

Syntax SIN(angle)

Description Calculates the sine of an angle, and returns a
real number between −1 and 1.

Parameters

Name:

Description:

Angle

The angle, supplied in radians, for which you
want the sine.

Example S=SIN(PI/2)
!PLACE THE VALUE 1.0 IN VARIABLE S

Syntax TAN(angle)

Description Computes the tangent of a given angle.
411

Chapter 8

412
MEAN

MEDIAN

Parameters

Name:

Description:

Angle

The angle, supplied in radians, for which you
want the tangent.

Example T=TAN(PI/4)
! PLACE THE VALUE 1.0 IN THE
! VARIABLE T

Syntax MEAN(“data”,count)

Description Returns the mean value for a set of data.

Parameters

Name:

Description:

Data

The name of the array variable in quotes.

Name:

Description:

Count

The number of elements to use for calculating
the arithmetic mean.

Example DATA[100] = REAL
GOSUB FILL_DATA_ARRAY
M = MEAN(“DATA”,100)
MESSAGEBOX(“MEAN:”+M” “,MB_OK)

Syntax MEDIAN(“data”,count)

Description Returns the median value for a set of data.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8
KURTOSIS

Parameters

Name:

Description:

Data

The name of the array variable in quotes.

Name:

Description:

Count

The number of data points to use.

Example DATA[100] = REAL
GOSUB FILL_DATA_ARRAY
M = MEDIAN(“DATA”,100)
MESSAGEBOX(“MEDIAN:”+M” “,MB_OK)

Syntax KURTOSIS("data",count)

Description Indicates mathematically the shape of the
distribution curve for a given set of data
points.

Parameters

Name:

Description:

Data

The name of the array variable in quotes.

Name:

Description:

Count

The number of points in the array to use.
Count must not exceed the length of the array.

Example DATA[100] = REAL
GOSUB FILL_DATA_ARRAY
K=KURTOSIS("DATA",75)
!USE THE FIRST 75 POINTS
MESSAGEBOX("KURTOSIS:"+K,

"CUSTOM SCRIPT",MB_OK)
413

Chapter 8

414
SIGMA

SKEW

Syntax SIGMA(“data”,count)

Description Returns the third deviation point for a set of
data.

Parameters

Name:

Description:

Data

The name of the array variable in quotes. The
array must be at least as long as the count.

Name:

Description:

Count

Specifies the number of data points to use.

Example DATA[100] = REAL
GOSUB FILL_DATA_ARRAY
R = SIGMA(DATA,100)

Syntax SKEW("data",count)

Description For a given set of data points, determines the
mathematical skewness of those data points.
The returned value is a REAL number.

Parameters

Name:

Description:

Data

The name of the array variable in quotes.

Name:

Description:

Count

Specifies the number of data points to use.

Example DATA[7] = REAL
R = SKEW("DATA",7)

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

STD_DEV

PI

Syntax STD_DEV("data",count)

Description Computes the standard deviation for a set of
data and returns a value. The returned value
is a REAL number.

Parameters

Name:

Description:

Data

The name of the array variable in quotes.

Name:

Description:

Count

Specifies the number of data points to use.

Example DATA[20] = REAL
 GOSUB FILL_DATA_ARRAY
R = STD_DEV("DATA",20)

Syntax PI

Description Returns the value of PI. This function is useful
for converting angles expressed in degrees to
radians. Radians is the required format for
trigonometric functions. The returned value is
3.141592654.

Example SETDP(9)
MESSAGEBOX("PI:"+PI," ",MB_OK)
!3.141592654 APPEARS ON THE SCREEN
415

Chapter 8

416
SQRT

CHR

IN

Syntax SQRT(num)

Description Returns the square root of a number.

Parameters

Name:

Description:

Num

A positive number.

Example MESSAGEBOX("THE SQUARE ROOT OF
FOUR IS", +SQRT(4)," ", MB_OK)

Syntax CHR(#)

Description Converts a number to a text character.

Parameters

Name:

Description:

#

A number between 0 and 255 that is converted
to a ASCII character.

Example MESSAGEBOX("LINE 1" + CHR(10) +
CHR(13) + "LINE 2", "TITLE",
MB_OK)

Syntax a IN b

Description Determines if one text string is contained in
another. If string a is contained in string b, a
nonzero value is returned.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8
INSTR

Parameters

Name:

Description:

a

A string value.

Name:

Description:

b

A string value.

Example IF(“W” IN “Ww”) THEN
MESSAGEBOX("W IS A SUBSTRING OF

Ww"," ",MB_OK)

Syntax INSTR (start,stop,string)

Description Returns a text line that is a substring of a
string.

Parameters

Name:

Description:

Start

The position to start the substring.

Name:

Description:

Stop

The position to stop the substring.

Name:

Description:

String

The string from which to extract the substring.

Notes The first position of string is 0.

Example S=INSTR(3,7,"TEST LINE")
! EXTRACT THE SUBSTRING "T LIN"
! AND PUTTING IT IN S.
417

Chapter 8

418
SETDP

TEXTLN

Syntax SETDP(# of decimal places)

Description Assigns the number of decimal points to use
when converting a number to a string.

Parameters

Name:

Description:

of decimal places

For string purposes only, determines the
number of decimal places to set.

Example SETDP(1)
MESSAGEBOX("PI:" + PI,

"CUSTOM SCRIPT",MB_OK)
!SHOWS 3.1

Syntax L=TEXTLEN(string)

Description Returns the number of characters in a text
string.

Parameters

Name:

Description:

String

The string to count.

Name:

Description:

L

The number of characters in the string.

Example L=TEXTLEN(“TEXT”)
! SET THE VARIABLE L EQUAL TO 4.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

UPCASE

MESSAGEBOX

Syntax UPCASE(text)

Description Returns the uppercase version of a text string.

Parameters

Name:

Description:

Text

A text string, which can contain both
uppercase and lowercase characters.

Example S=UPCASE(“TEST LINE.”
! PUT INTO S: “TEST LINE.”

Syntax MESSAGEBOX(“Message data”,
“box title”, windows_command)

Description Displays a standard Windows message box.

Parameters

Name:

Description:

Messagebox

Returns a constant which represents the
button pushed. That is, the OK button returns
IDOK, and MB_YESNO returns IDYES or
IDNO.

Name:

Description:

box title

The title of the Windows message box.

Name:

Description:

windows_command

A Windows command. Typical commands are
MB_OK or MB_YESNO.
419

Chapter 8

420
DATE

DATE$

Example R = MESSAGEBOX(“THIS IS A TEST”,
“SCRIPT”, MB_YESNO)

IF(R = IDNO) THEN
EXIT

Syntax DATE

Description Returns the system date in the numeric format
yyyymmdd, where yyyy represents the year,
mm represents the month, and dd represents
the day.

Comments The variable in which the data is returned
must be defined as a number.

Example D=DATE
! JANUARY 1, 2000 IS
! RETURNED AS D=20000101

Syntax S=DATE$

Description Returns the system date in the text format
yyyymmdd, where yyyy represents the year,
mm represents the month, and dd represents
the day.

Comments The variable in which the data is returned
must be defined as a string.

Example S=DATE$
! RETURNS THE DATE JANUARY 1, 2000
! AS A STRING

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

TIME

TIME$

OPEN

Syntax TIME

Description Returns the system time in the numeric
format hhmmss, where hh represents the hour,
mm represents the minute, and ss represents
the number of seconds.

Comments The variable in which the data is returned
must be defined as a number.

Example S=TIME
! PLACE THE CURRENT TIME VALUE IN
! A NUMERIC VARIABLE.

Syntax TIME$

Description Returns the system time in the following text
format: hhmmss, where hh represents the hour,
mm represents the minute, and ss represents
the number of seconds.

Comments The variable in which the data is returned
must be defined as a string.

Example MESSAGEBOX("TIME:"+TIME$, " ",MB_OK)

Syntax OPEN(filename)

Description Opens a text file and returns a reference
number for reading and writing to a file.
421

Chapter 8

422
CLOSE

READ

Parameters

Name:

Description:

Filename

The name of the text file. It can be any valid
text file name.

Example FP = OPEN(“C:\AUTOEXEC.BAT”)
S=READ(FP)
CLOSE(FP)

Syntax CLOSE(filevar)

Description Closes a file with the file referenced by the
variable. If this function is successful, a value
of 0 is returned.

Example CLOSE(FP)
! CLOSE THE FILE WHOSE FILE
IF (FP=0) THEN ! POINTER IS FP.
MESSAGEBOX("CLOSE OK"," ",MB_OK)
! THE FILE WAS CLOSED SUCCESSFULLY

Syntax READ(filevar)

Description Returns one sequential line of text from a file.

Parameters

Name:

Description:

filevar

The name of the text file from which to read.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

WRITE

EXIST

Example FP = OPEN("MYTEXT.TXT")
S=READ(FP)
! READ ONE LINE FROM THE FILE
! REFERENCED BY FP
! PUTTING THE TEXT IN VARIABLE S.

Syntax OK=WRITE(fp, string)

Description Writes string data to an open file.

Parameters

Name:

Description:

fp

A previously opened file.

Name:

Description:

String

A variable, expression, or literal text.

Name:

Description:

OK

Set to nonzero if the write is successful.

Example WRITE(FP, “THIS IS A STRING”)

Syntax YES=EXIST(filename)

Description Returns a value indicating whether a specified
file exists.

Parameters

Name:

Description:

Filename

The name of the file to check.
423

Chapter 8

424
ERASE

CHG_PATH

Name:

Description:

Yes

If the file exists, Yes is a nonzero value. If the
file does not exist, Yes equals 0.

Example YES=EXIST(“B:\TEMP.DAT”)
! YES IS NONZERO
! IF B:\TEMP.DAT EXISTS.
! YES=0 IF B:\TEMP.DAT DOES NOT

EXIST.

Syntax ERASE(filename)

Description Removes a named file from the disk.

Parameters

Name:

Description:

filename

The name of the file to delete.

Example ERASE(“D:\MYDIR\FOOBAR”)
! ERASES FILE FOOBAR FROM D:\MYDIR

Syntax CHG_PATH(path)

Description Changes the current drive and directory to the
indicated path. If this function is successful, a
nonzero value is returned. If this function is
unsuccessful, a value of 0 is returned.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

EOF

IF THEN ELSE

Parameters

Name:

Description:

path

The drive and directory path that you want to
change to.

Example CHG_PATH("C:\MYDIR")

Syntax EOF(file #)

Description End of file indicator. EOF returns 0 at the end
of the file and −1 when past the end of the file.

Parameters

Name:

Description:

file #

The file reference number that was returned
when the file was opened.

Example FP = OPEN("C:\AUTOEXEC.BAT")
S = READ(FP)
IF(EOF(FP)) THEN CLOSE(FP)

Syntax IF(expression) THEN
 Do something
ELSE
 Do something
425

Chapter 8

426
WHILE WEND

Description Conditional program branch. If the IF
expression is not 0, execute the statements
after THEN. Otherwise, if the ELSE keyword
is present, execute the statements that follow
the ELSE. If more than one statement follows
either the IF or the ELSE, a paired set of
braces must be used.

Example IF(1>2)THEN
 MESSAGEBOX("1 IS GREATER THAN

2", " ",MB_OK)
 GOTO EXIT
}
ELSE
 MESSAGEBOX("1 IS NOT GREATER

THAN 2"," ",MB_OK)

Syntax WHILE(expression)
 Do something
WEND

Description While the WHILE expression is nonzero,
executes the statements between WHILE and
WEND.

Notes This function is similar to REPEAT UNTIL,
except that the test to evaluate the expression
takes place at the top of the loop.

Example DONE=0
WHILE(NOT DONE)
 do something
WEND

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

REPEAT UNTIL

GOSUB

Syntax REPEAT
UNTIL(expression)

Description REPEAT UNTIL waits for expression to
become nonzero. Any statements between
REPEAT and UNTIL are repetitively
executed.

Example I = 0
REPEAT
 I = I + 1
UNTIL (I >10)

Syntax GOSUB label RETURN

Description GOSUB indicates that the program should
branch to the specified label. When the
RETURN statement is encountered, program
execution resumes at the next program line
after the GOSUB.

Parameters

Name:

Description:

label

A string that specifies where the program
branches to.

Example GOSUB PRINT_PAGE
Next line of code
:PRINT_PAGE
do something
RETURN
427

Chapter 8

428
GOTO

END

EXIT

Syntax GOTO label

Description GOTO indicates that the program should
branch to the specified label. This is an
unconditional branch.

Parameters

Name:

Description:

label

A string that specifies where the program
branches to.

Example GOTO DONE
...
:DONE

Syntax END

Description Ends the currently executing Custom Script
program.

Notes The last line of a program must be END or
EXIT.

Example END

Syntax EXIT

Description Unconditionally stops the Custom Script
program.

Notes The last line of a program must be END or
EXIT.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

DELAY

RETURN

OPENLOGBOX

Example EXIT

Syntax DELAY(time)

Description Stops the Custom Script program from
executing for a specified time.

Parameters

Name:

Description:

time

The time in seconds.

Example DELAY(.5)
!DELAY FOR .5 SECOND

Syntax RETURN

Description Returns program control to the statement
after the GOSUB call.

Example RETURN

Syntax OPENLOGBOX(X, Y, WIDTH, HEIGHT,
READONLY)

Description Opens a log window and returns a reference
number to the open log window.
429

Chapter 8

430
Parameters

Name:

Description:

 X

The horizontal position of the upper-left
corner of the window.

Name:

Description:

 Y

The vertical position of the upper-left corner
of the window.

Name:

Description:

WIDTH

The width of the window.

Name:

Description:

HEIGHT

The height of the window.

Name:

Description:

READONLY

If nonzero, only the Custom Script program
an write to the window. If 0, the operator can
enter text using the keyboard or the program.

Notes More than one window can be opened at one
time.

Example LOG[10] = INTEGER
! SET UP AN ARRAY TO HANDLE UP TO
! 10 DIFFERENT LOG WINDOWS
LOG[0] = OPENLOGBOX(10,200,300,

150,YES)
!X=10; Y=200; WIDTH=300;
! HEIGHT=150; READONLY
WRITELOGBOX("THIS IS AN IMPORTANT

LINE OF TEXT",LOG[0])
! DISPLAY SOME TEXT
PRINTLOG(LOG[0])
! PRINT TO THE PRINTER

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

CLOSELOGBOX

Example (cont.) CLEARLOGBOX(LOG[0])
! CLEAR OUT THE WINDOW
CLOSELOGBOX(LOG[0])
! CLOSE THE WINDOW

Syntax CLOSELOGBOX(LOGNUM)

Description Closes an open log window.

Parameters

Name:

Description:

LOGNUM

The reference number returned from the
OPENLOGBOX function.

Example LOG[10] = INTEGER
! SET UP AN ARRAY TO HANDLE UP
! TO 10 DIFFERENT LOG WINDOWS
LOG[0] = OPENLOGBOX(10,200,300,

150,YES)
!X=10; Y=200; WIDTH=300;
!=HEIGHT=150; READONLY
WRITELOGBOX("THIS IS AN IMPORTANT

LINE OF TEXT",LOG[0])
! DISPLAY SOME TEXT
PRINTLOG(LOG[0])
! PRINT TO THE PRINTER
CLEARLOGBOX(LOG[0])
! CLEAR OUT THE WINDOW
CLOSELOGBOX(LOG[0])
! CLOSE THE WINDOW
431

Chapter 8

432
WRITELOGBOX

CLEARLOGBOX

Syntax WRITELOGBOX(“Text”,LOGNUM)

Description Writes text in an open log window.

Parameters

Name:

Description:

LOGNUM

The reference number returned from the
OPENLOGBOX function.

Example LOG[10] = INTEGER
! SET UP AN ARRAY TO HANDLE UP
! TO 10 DIFFERENT LOG WINDOWS
LOG[0] = OPENLOGBOX(10,200,300,

150,YES)
!X=10; Y=200; WIDTH=300;
!HEIGHT=150; READONLY
WRITELOGBOX("THIS IS AN IMPORTANT

LINE OF TEXT",LOG[0])
! DISPLAY SOME TEXT
PRINTLOG(LOG[0])
! PRINT TO THE PRINTER
CLEARLOGBOX(LOG[0])
! CLEAR OUT THE WINDOW
CLOSELOGBOX(LOG[0])
! CLOSE THE WINDOW

Syntax CLEARLOGBOX(LOGNUM)

Description Clears the text from an open log window.

Using the Custom Script Tool API

8

8

8

8

8

8

8

8

8

Parameters

Name:

Description:

LOGNUM

The reference number returned from the
OPENLOGBOX function.

Example LOG[10] = INTEGER
! SET UP AN ARRAY TO HANDLE UP TO
! 10 DIFFERENT LOG WINDOWS
LOG[0] = OPENLOGBOX(10,200,300,

150,YES)
!X=10; Y=200; WIDTH=300;
!HEIGHT=150; READONLY
WRITELOGBOX("THIS IS AN IMPORTANT
LINE OF TEXT",LOG[0])
! DISPLAY SOME TEXT
PRINTLOG(LOG[0])
! PRINT TO THE PRINTER
CLEARLOGBOX(LOG[0])
! CLEAR OUT THE WINDOW
CLOSELOGBOX(LOG[0])
! CLOSE THE WINDOW
433

Chapter 8

434

9
Using the Data Matrix Reader

Tool API
Overview of the Data Matrix Reader Tool API 436

CcDMCode Methods . 439

CcDMReader Methods . 458

Example Program Using the Data Matrix Reader Tool API. . . 460
435

Chapter 9

436
Overview of the Data Matrix Reader Tool
API

The Data Matrix Reader tool operates on an image or ROI containing
a two-dimensional data matrix symbol of type ECC200. This tool
contains two classes: the CcDMCode class and the CcDMReader
class.

Note: The Data Matrix Reader tool requires MFC (Microsoft
Foundation Class) support.

The CcDMCode class allows you to define the data matrix symbol
you are looking for and return information about that symbol. The
image and the ROI, if an ROI is defined, are passed to the Read
method in the CcDMReader class. This method locates and decodes
two-dimensional data matrix symbols in the ROI.

Note: An ROI is not required. However, if an ROI is used, it must
be a rectangle ROI.

The class methods are listed in Table 26.

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

Table 26: CcDMCode and CcDMReader Class Methods

Method
Class

Method
Category Method Name

CcDMCode
Methods

Initialization void CcDMCode::Initialize(BOOL ClearSA)

Sets Values BOOL CcDMCode::SetAutoSize()

BOOL CcDMCode:: SetContrast (int contrast)

BOOL CcDMCode::SetMinModuleSize(int size)

BOOL CcDMCode::SetSize(CSize size)
BOOL CcDMCode::SetSize(int rows, int cols)

BOOL CcDMCode::SetTimeout(int timeout)

Returns
Values

double CcDMCode::GetAngle()

CPoint CcDMCode::GetCenter()

int CcDMCode::GetCodeFileID()

int CcDMCode::GetContrast()

void CcDMCode::GetCorners(CPoint corners[4])
void CcDMCode::GetCorners(POINT corners[4])

int CcDMCode::GetError()

int CcDMCode::GetErrorCount()

int CcDMCode::GetExecTime()

int CcDMCode::GetFNC1()

int CcDMCode::GetMinModuleSize(int size)

CSize CcDMCode::GetModuleSize()

int CcDMCode::GetProgress()

int CcDMCode::GetSAInfo(int* n, int* m)

CSize CcDMCode::GetSize()

char* CcDMCode::GetText()
437

Chapter 9

438
CcDMCode
Methods
(cont.)

Returns
Values
(cont.)

int CcDMCode::GetTextLen()

double CcDMCode::GetTimeout()

BOOL CcDMCode::IsSASetComplete()

CString CcDMCode::ReportError()

CcDMReader
Methods

Reads
Symbols

int CcDMRead::Read (CcImage* image,
CcRoiBase* roi, CcDMCode* code)

Table 26: CcDMCode and CcDMReader Class Methods (cont.)

Method
Class

Method
Category Method Name

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

CcDMCode Methods
This section describes the methods of the CcDMCode class in detail.

SetAutoSize

SetContrast

Syntax BOOL CcDMCode::SetAutoSize(
);

Include File CDMCode.h

Description Uses built-in algorithms to automatically find
the size of the two-dimensional data matrix
symbol.

Parameters None

Notes By default, the size is automatically measured.

Calling this method cancels the effect of a
prior call to the SetSize method, described on
page 441.

Return Values

0 The method failed.

1 The method was successful.

Syntax BOOL CcDMCode::SetContrast(
int contrast
);

Include File CDMCode.h

Description Sets the contrast value used in edge detection
when searching for a two-dimensional data
matrix symbol.
439

Chapter 9

440
Parameters

Name:

Description:

contrast

Grayscale gradient threshold. Ranges from 1
to 255. The default value is 20.

Notes It may be desirable to reduce the value for
very low contrast images or images with
blurred edges. When working with noisier
and more textured images where background
features may be more distinct than the
two-dimensional data matrix symbol, it may
be desirable to increase the value. Larger
values require steeper edge gradients before
an edge is detected.

The effect of some example values is as
follows:

See also GetContrast, described on page 445.

Return Values

0 The method failed.

1 The method was successful.

255

38

102

12

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

SetMinModuleSize

SetSize

Syntax BOOL CcDMCode::SetMinModuleSize(
int size
);

Include File CDMCode.h

Description Provides an estimate of the minimum module
size, in pixels.

Parameters

Name:

Description:

size

The minimum module size, in pixels. Ranges
from 2 to 200 pixels.

Notes See also GetMinModuleSize, described on
page 450.

Return Values

0 The size is out of range.

1 This size is valid.

Syntax BOOL CcDMCode::SetSize(
CSize size
);

or

BOOL CcDMCode::SetSize(
int rows,
int cols,
);

Include File CDMCode.h
441

Chapter 9

442
SetTimeout

Description Sets the size of the two-dimensional data
matrix symbol. This is used only in cases
where the pitch modules are of poor quality
and automatic detection fails. The default is to
automatically determine the size.

Parameters

Name:

Description:

size

size.cx is the number of columns; size.cy is the
number of rows.

Name:

Description:

rows

The number of rows.

Name:

Description:

cols

The number of columns.

Notes See also GetSize, described on page 453, and
SetAutoSize, described on page 439.

Return Values

0 The size is invalid.

1 This size is valid.

Syntax BOOL CcDMCode::SetTimeout(
int timeout
);

Include File CDMCode.h

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetAngle

Description Sets the timeout value, in milliseconds. The
timeout condition is checked at various points
during the read operation. If a timeout
condition is detected, the read operation is
aborted and the error status is set to
IDS_ERR_TIMEOUT.

Parameters

Name:

Description:

timeout

The maximum number of milliseconds
allowed after the read operation starts and
before the operation times out. The valid
range is 1 to 30000 milliseconds (or 5 minutes).

Notes See also GetTimeout, described on page 455.

Return Values

0 The method failed.

1 The method was successful.

Syntax double CcDMCode::GetAngle(
);

Include File CDMCode.h

Description Reports the code axis angle with respect to the
image axis. The value is given in radians and
specifies the angle to the base side of the "L"
(with respect to the x-axis) that defines the
border of the two-dimensional data matrix
symbol. A value of 0 indicates that the base is
parallel to the x-axis and is pointing to the
right. Angle values increase in a
counterclockwise direction.
443

Chapter 9

444
GetCenter

GetCodeFileID

Parameters None

Notes None

Return Values The angle, in radians.

Syntax CPoint CcDMCode::GetCenter(
);

Include File CDMCode.h

Description Reports the center position of the
two-dimensional data matrix symbol, in
pixels. The position given is the mean of the x-
and y-ordinates of the four corners.

Parameters None

Notes None

Return Values The pixel position of the center of the code,
relative to the image.

Syntax int CcDMCode::GetCodeFileID(
);

Include File CDMCode.h

Description Returns the file identifier for the structured
append data set.

Parameters None

Notes None

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetContrast

GetCorners

Return Values

File identifier The code is part of a structured append set.

−1 The code is not part of a structured append
set.

Syntax int CcDMCode::GetContrast(
);

Include File CDMCode.h

Description Returns the current contrast value that was set
with SetContrast.

Parameters None

Notes See also SetContrast, described on page 439.

Return Values The contrast value; values range from 1 to 255.

Syntax void CcDMCode::GetCorners(
CPoint corners[4]
);

or

void CcDMCode::GetCorners(
POINT corners[4]
);

Include File CDMCode.h
445

Chapter 9

446
Description Returns the four corner points of the
two-dimensional data matrix symbol, as
follows:

Parameters None

Name:

Description:

corners

The position of each corner, where corner[0] is
the top of the vertical side of the "L" that
defines the border of the two-dimensional
data matrix symbol; corner[1] is the left base
corner; corner[2] is the right base corner;
corner[3] is the top right corner; and corner[4]
is the right top corner, irrespective of rotation.

Notes None

Return Values None

[0]

[1] [2]

[3]

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetError

Syntax int CcDMCode::GetError(
);

Include File CDMCode.h

Description Returns the numerical error code for the error.
This error is the last recorded error. The read
operation may have reached a more advanced
stage before recording the final error code.

Parameters None

Notes See also GetProgress, described on page 451.

Return Values

9001 −
IDS_ERR_NOMEMORY

Memory allocation error.

9002 − IDS_ERR_REEDSOL Error correction error – too many errors to
correct.

9003 −IDS_ERR_SCHEME Invalid data encoding.

9004 −
IDS_ERR_INVCELLNUM

A possible code has been located and the
autosize scan has completed, but the size is
not valid.

9005 −
IDS_ERR_MODULE_SIZE

Module size measured during the autosize
scan is invalid.

9006 − IDS_ERR_SCANERR ROI access error while scanning for the "L"
that defines the border of the
two-dimensional data matrix symbol.

9007 − IDS_ERR_ROI_SIZE The supplied ROI (or image) is too small to
contain a code.

9008 − IDS_ERR_ROI_TYPE The supplied ROI is not a supported type.

9009 − IDS_ERR_TIMEOUT The read operation has timed out.
447

Chapter 9

448
GetErrorCount

Return Values (cont.)

9010 − IDS_ERR_NOCODE No possible code detected.

9011 − IDS_ERR_SASET Structured append values are invalid (not in
the range 1-16 of 1-16).

9012 − IDS_ERR_SAFILE Stuctured append code’s file ID does not
match that of the seed CcCode object. It is
assumed that the new code is not part of the
set. If no seed ID is supplied (==0), then no
error occurs.

9013 − IDS_ERR_SADUP Duplicate structured append code. The seed
code object has already logged a symbol with
the new code index n of m.

9014 − IDS_ERR_SAM Set size mismatch for the structured append
code. The seed object has a different number
of symbols in the set than the newly read
code.

Syntax int CcDMCode::GetErrorCount(
);

Include File CDMCode.h

Description Returns the number of errors that were found
and corrected in the read operation.

Parameters None

Notes One code word corresponds to eight modules
in the matrix.

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetExecTime

GetFNC1

Return Values

0 No errors were found.

−1 Error correction failed due to too many errors.

The number of data code
words (bytes) that contained

errors.

Errors are detected and corrected.

Syntax int CcDMCode::GetExecTime(
);

Include File CDMCode.h

Description Returns the time taken to read the code, in
milliseconds.

Parameters None

Notes None

Return Values The time in milliseconds that it took to read
the code.

Syntax int CcDMCode::GetFNC1(
);

Include File CDMCode.h

Description Returns the symbology identifier option
value.

Parameters None

Notes GetText, described on page 454, returns the
symbology identifier as part of the data.
449

Chapter 9

450
GetMinModuleSize

GetModuleSize

Return Values

−1 (no identifier) Symbology ID not enabled.

1 (]d1 identifier) ECC200.

2 (]d2 identifier) ECC200, FNC1 1st or 5th.

3 (]d3 identifier) ECC200, FNC1 2nd or 6th.

4 (]d4 identifier) ECC200, with ECI protocol.

5 (]d5 identifier) ECC200, FNC1 1st or 5th with ECI.

6 (]d6 identifier) ECC200, FNC1 2nd or 6th with ECI.

Syntax int CcDMCode::GetMinModuleSize(
);

Include File CDMCode.h

Description Returns the current minimum module size.

Parameters None

Notes Refer to the SetMinModuleSize method,
described on page 441, for more information.

Return Values The current minimum module size.

Syntax CSize CcDMCode::GetModuleSize(
);

Include File CDMCode.h

Description Reports the mean pixel width and height of a
module as measured.

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetProgress

Parameters None

Notes This method can give useful feedback for
fine-tuning the MinModule value. The values
for width and height are aligned with the
symbol sides rather than with the image pixel
grid.

Return Values The mean module size of the two-dimensional
data matrix symbol that was found.

Syntax int CcDMCode::GetProgress(
);

Include File CDMCode.h

Description Returns the numerical progress value for the
read operation. This value represents the most
advanced stage reached in the read operation.

For example, the read operation may locate
the sides of what seems to be a code but which
has an invalid size format. The read attempt
continues and may record the last error as
IDS_ERR_NOCODE if the final scan misses
the symbol. The progress code contains the
best stage reached.

Parameters None

Notes None
451

Chapter 9

452
GetSAInfo

Return Values

IDS_PRG_NONE No progress has been made.

IDS_PRG_1ST_EDGE An edge has been found while scanning for
the "L" that defines the border of the
two-dimensional data matrix symbol.

IDS_PRG_VL_EDGE A possible vertical side of an "L" that defines
the border of the two-dimensional data matrix
symbol has been found.

IDS_PRG_BOX_CODE Four sides of a code have been located.

IDS_PRG_MEAS_MODS Pitch modules have been measured.

IDS_PRG_VAL_SIZE A valid code size has been detected.

IDS_PRG_MOD_SAMP The data modules have been sampled.

IDS_PRG_BYTES Byte data has been extracted from the
sampled module data.

IDS_PRG_ECC Error correction has succeeded.

IDS_PRG_DEC Data has been decoded.

Syntax int CcDMCode::GetSAInfo(
int *n,
int *m
);

Include File CDMCode.h

Description If the code is part of a structured append data
set, this method returns the position of the
symbol in the set and the total number of
symbols in the set.

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetSize

Parameters

Name:

Description:

*n

As an input parameter, a pointer to an integer
that receives that symbol index.

As an output parameter, the index of this
symbol within the m total symbols of the set.

Name:

Description:

*m

As an input parameter, a pointer to an integer
that receives the total number of symbols in
the set.

As an output parameter, the total number of
symbols in the set.

Notes None

Return Values The number of symbols decoded so far, which
indicates the reading progress.

m The entire structured append data set has
been read.

0 The code is not a symbol in the structured
append data set.

Syntax CSize CcDMCode::GetSize(
);

Include File CDMCode.h

Description Returns the size of the symbols as the number
of modules (such as 32 x 32).

Parameters None
453

Chapter 9

454
GetText

GetTextLen

Notes If this method is called after calling SetSize,
described on page 441, and before calling
CcDMRead::Read(), described on page 458,
the values (column and row) set by SetSize
are returned in the CSize structure. After a
read operation, the detected values (column
and row) are returned in the CSize structure.

Return Values The size of the symbol in the modules.

Syntax char* CcDMCode::GetText(
);

Include File CDMCode.h

Description Returns the decoded data string as ASCII text.

Parameters None

Notes The text includes special codes and headers, if
they are specified by ECI, FNC1, or macro
controls, which are embodied in the code
bitstream.

Return Values The decoded text.

Syntax int CcDMCode::GetTextLen(
);

Include File CDMCode.h

Description Returns the length of the decoded data string.

Parameters None

Notes None

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

GetTimeout

Initialize

Return Values The number of bytes in the decoded
text/data, not including terminating NULLs.

Syntax int CcDMCode::GetTimeout(
);

Include File CDMCode.h

Description Returns the current timeout value, in
milliseconds.

Parameters

Notes See also SetTimeout, described on page 442.

Return Values The timeout value.

Syntax void CcDMCode::Initialize(
BOOL ClearSA
);

Include File CDMCode.h

Description Resets the code object to a default state.

Parameters

Name:

Description:

ClearSA

Determines whether to reset the structured
append data set. A value of 0 leaves the
structured append data set unchanged. A
value of 1 resets the structured append data
set.

Notes None
455

Chapter 9

456
IsSASetComplete

ReportError

Return Values None

Syntax BOOL CcDMCode::IsSASetComplete(
);

Include File CDMCode.h

Description Tests the completion state for the structured
append data set that is defined by this code
object.

Parameters None

Notes None

Return Values

0 All the symbols in the set have not been
decoded.

1 All symbols in the set have been decoded.

Syntax CString CcDMCode::ReportError(
);

Include File CDMCode.h

Description Returns any errors that occur during the read
operation, in descriptive format. The text
corresponding to error codes is loaded from
the string table.

Parameters None

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

Notes Error messages are in the form: “Error
message [Progress report]”

The following is an example of an error
message that may be returned:
“Invalid data detected while decoding
encodation [Error correction successful]”

Return Values The error message.
457

Chapter 9

458
CcDMReader Methods
This section describes the Read method of the CcDMReader class in
detail.

Read

Syntax int CcDMRead::Read(
CcImage* image,
CcRoiBase* roi,
CcDMCode* code
);

Include File C_DMRead.h

Description Reads a two-dimensional data matrix symbol.

Parameters

Name:

Description:

image

A pointer to a Data Translation CcImage class
object.

Name:

Description:

roi

A pointer to a region of interest that defines
the code search region. If NULL, the entire
image is searched.

Name:

Description:

code

A CcCode object that is populated with
decoded information. This is a returned value.

Notes Currently, only rectangle ROI can be used.

The ROI bounding box should be larger than
the code object.

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

Return Values The return value indicates whether the read
operation was successful or whether an error
occurred.

Result states are bit flags. Test for data
available with retcode & DM_OK. Test for
structured append data sets with retcode &
DM_MULTIPLE, and so on.

Note that a return of DM_CODE_ERROR can
be tested as retcode == DM_CODE_ERROR or
retcode & DM_CODE_ERROR. Call GetError,
described on page 447, or ReportError,
described on page 456, to get more
information on the nature of the error. If
GetError() == IDS_ERR_SCHEME, invalid
data was encountered in the final stages of the
read operation. You can retrieve the data up to
the position where the error occurred with
GetText, described on page 454.

DM_OK Normal read of single code. Data returned.

DM_COMPLETE_SET Last of a structured append data set decoded.
Data returned.

DM_MULTIPLE More than one nonstructured append symbol
in view. First data returned.

DM_CODE_SET One or more symbols of a structured append
set decoded. Only incomplete data available.

DM_CODE_ERROR Some error occurred in reading the code.
459

Chapter 9

460
Example Program Using the Data Matrix
Reader Tool API

This program shows a basic example of reading a two-dimensional
data matrix symbol.

CcDMReader Reader;
CcDMCode Code;
CString result;
int ret;

// Set code reading parameters
Code.SetMinModuleSize(5);
Code.SetTimeout(1000);
// Read code
ret = Reader.Read(pImage,pRoi,&Code);
if(ret&DM_OK)

{
result = Code.GetText();
// do something with the result

}
else if (ret==DM_CODE_ERROR)

{
result = Code.GetErrorReport();
// handle the error

}

Using the Data Matrix Reader Tool API

9

9

9

9

9

9

9

9

9

If you are working with structured append data sets, the code object
holds intermediate data; therefore, you need to pass the same object
to successive Read methods to allow the full data to be compiled, as
shown in this example:

CcDMReader Reader;
// Default code object
CcDMCode Code;
CString *result=NULL;
// An array of CStrings to hold each symbol data
CString FinalData;
// To hold combined structured append data sets
int ret;
int SymbolNumber;
int SetSize;
int FileID;

// Set code reading parameters
Code.SetMinModuleSize(5);
Code.SetTimeout(100);
// Read code
ret = Reader.Read(pImage,pRoi,&Code);
if(ret&DM_OK)

{
if(ret&DM_CODE_MULTIPLE)
{
Code.GetSAInfo(&SymbolNumber,&SetSize);
if(result==NULL)

{
result = new CString[SetSize];

}
// Save this result
result[SymbolNumber]=Code.GetText();
// Test for complete set read
461

Chapter 9

462
if(ret& DM_COMPLETE_SET)
// OR if(Code.IsSASetComplete())

{
// Concatenate all the data in number
// sequence
FinalData = “”; // Clear
for(i=0;i<SetSize;i++)
{

FinalData+=result[i]; // Concatenate
}

// Report the result
MessageBox(FinalData,”Structured append

data”,MB_OK);
}

}
}

else if (ret==DM_CODE_ERROR)
{

result = Code.GetErrorReport();
// handle the error

}

10
Using the Digital I/O Tool API

Overview of the Digital I/O Tool API. 464

Description of CcDigIODevice Methods 466
463

Chapter 10

464
Overview of the Digital I/O Tool API
The Digital I/O API has one object only: the CcDigIODevice class. Its
method is to control the input and output lines of a specified digital
I/O device. The Digital I/O Tool API is intended to be used with the
Device Manager API, described on page 206.

The CcDigIODevice class uses a standard constructor and destructor
and the class methods listed in Table 27.

Table 27: CcDigIODevice Object Methods

Method Type Method Type Method Name

Constructor &
Destructor

− CcDigIODevice();

− ~ CcDigIODevice();

CcDigIODevice
Class Methods

Setting Properties int ClearIntOnChangeConfig ();

int EnableAsyncWrite (bool bEnable);

int EnableCachedWrite (bool bEnable);

int EnableIntOnChange (int nLine, bool
bEnable);

int EnableLatchedRead (bool bEnable);

int EnableWaitOnRead (bool bEnable);

int SetDeviceConfig (LPSTREAM pStream);

int SetDeviceProperty (int nPropId, int
nValue);

int SetReadTimeout (int nTimeout);

int ShowDeviceConfigDialog (HWND
hParent);

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

CcDigIODevice
Class Methods
(cont.)

Retrieving
Properties

int GetDeviceCaps (int* pnDeviceCaps);

int GetDeviceConfig (LPSTREAM pStream);

int GetDeviceConfigFileDesc (LPSTR
szFileDesc, int nBufSize);

int GetDeviceConfigFileExt (LPSTR
szFileExt, int nBufSize);

int GetDeviceProperty (int nPropId, int*
pnValue);

int GetErrorText (LPSTR szErrorText, int
nBufSize);

int GetInputLineCount (int* pnCount);

int GetOutputLineCount (int* pnCount);

int GetReadTimeout (int* pnTimeout);

bool IsAsyncWriteDone ();

bool IsAsyncWriteEnabled ();

bool IsCachedWriteEnabled ();

bool IsIntOnChangeEnabled (int nLine);

bool IsLatchedReadEnabled ();

bool IsWaitOnReadEnabled ();

Controlling the
Digital I/O Lines

int ExecuteCachedWrite ();

int ExecuteLatchedRead ();

int ReadInputLine (int nLine, bool*
pbLineState);

int WriteOutputLine (int nLine, bool
bLineState, int PulseWidth);

Table 27: CcDigIODevice Object Methods (cont.)

Method Type Method Type Method Name
465

Chapter 10

466
Description of CcDigIODevice Methods
This section provides a detailed description of each method of this
class.

ClearIntOnChangeConfig

Syntax int ClearIntOnChangeConfig (
);

Include File C_digitalio.h

Description Clears (disables) the current
interrupt-on-change configuration for all
digital input lines.

Parameters None

Notes None

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Clear the current
//interrupt-on-change
//configuration.
if (pdio->ClearIntOnChangeConfig (

) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

EnableAsyncWrite

Syntax int EnableAsyncWrite (
bool bEnable);

Include File C_digitalio.h

Description Enables/disables asynchronous-write mode.

Parameters

Name:

Description:

bEnable

A Boolean variable that specifies whether
asynchronous-write mode is enabled or
disabled. If TRUE, asynchronous-write mode
is enabled. If FALSE, asynchronous-write
mode is disabled.

Notes When asynchronous-write mode is enabled,
all calls to WriteOutputLine, described on
page 498, or ExecuteCachedWrite (if
cached-write mode is enabled), described on
page 473, return immediately allowing other
processing to continue while the write
operation is in progress. Asynchronous-write
mode is especially useful when generating
output pulses that are somewhat lengthy in
duration (greater than 500 ms), since it allows
application-specific processing to be
performed in parallel with output pulse
generation.

This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.
467

Chapter 10

468
EnableCachedWrite

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Error text buffer.
TCHAR szText[500];
// Enable asynchronous-write mode.
if (pdio->EnableAsyncWrite (

TRUE) < 0)
{

// Get error text.
pdio->GetErrorText (szText,500);

}

Syntax int EnableCachedWrite (
bool bEnable);

Include File C_digitalio.h

Description Enables or disables cached-write mode.

Parameters

Name:

Description:

bEnable

A Boolean variable that specifies whether
cached-write mode is enabled or disabled. If
TRUE, cached-write mode is enabled. If
FALSE, cached-write mode is disabled.

Notes When cached-write mode is enabled, all write
operations generated by calls to
WriteOutputLine, described on page 498, are
stored in internal memory and are not written
to the digital I/O device until the
ExecuteCachedWrite method, described on
page 473, is called. Cached-write mode is
useful if you wish to write to multiple output
lines at the same time.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

EnableIntOnChange

Notes (cont.) This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example // Digital I/O API object.

CcDigIODevice *pdio;
// Error text buffer.
TCHAR szText[500];
// Enable cached-write mode.
if (pdio->EnableCachedWrite (

TRUE) < 0)
{

// Get error text.
pdio->GetErrorText (szText,500);

}

Syntax int EnableIntOnChange (
int nLine,
bool bEnable);

Include File C_digitalio.h

Description Enables interrupt-on-change for a specified
digital input line.

Parameters

Name:

Description:

nLine

The input line to read. Values range from 0 to
n – 1, where n is the number of input lines
supported by the digital I/O device.
469

Chapter 10

470
EnableLatchedRead

Name:

Description:

bEnable

A Boolean variable that specifies whether
interrupt-on-change is enabled or disabled for
the specified digital input line. If TRUE,
interrupt-on-change is enabled. If FALSE,
interrupt-on-change is disabled.

Notes None

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Enable interrupt-on-change for
//line 0.
if (pdio->EnableIntOnChange (0,

TRUE) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int EnableLatchedRead (
bool bEnable);

Include File C_digitalio.h

Description Enables latched-read operations.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

Parameters

Name:

Description:

bEnable

A Boolean variable that specifies whether to
enable or disable latched-read operations. If
TRUE, latched-read operations are enabled. If
FALSE, latched-read operations are disabled.

Notes When latched-read operations are enabled, an
application must call ExecuteLatchRead,
described on page 474, to store the current
state of all digital input lines in memory.
While latched reads are enabled, all
subsequent calls to ReadInputLine, described
on page 492, return values from memory
instead of reading the digital I/O device
directly.

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Enable latched reads.
if (pdio->EnableLatchedRead (TRUE)

< 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

471

Chapter 10

472
EnableWaitOnRead

Syntax int EnableWaitOnRead (
bool bEnable);

Include File C_digitalio.h

Description Enables wait-on-read for all digital input lines
for which interrupt-on-change was enabled.

Parameters

Name:

Description:

bEnable

A Boolean variable that specifies whether
wait-on-read is enabled or disabled. If TRUE,
wait-on-read is enabled. If FALSE,
wait-on-read is disabled.

Notes When wait-on-read is enabled, all calls to
ReadInputLine, described on page 492, and
ExecuteLatchedRead, described on page 474,
do not return until one or more digital input
lines for which interrupt-on-change was
enabled changes state or until the
wait-on-read timeout period expires.

This method is available only if the device
supports the DIO_CAP_INTONCHANGE
capability.

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

ExecuteCachedWrite

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Enable wait-on-read.
if (pdio->EnableWaitOnRead (TRUE)

< 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int ExecuteCachedWrite (
);

Include File C_digitalio.h

Description Executes a cached-write operation.

Parameters None

Notes When cached-write mode is enabled, this
method performs a single write to the digital
I/O device. This write operation outputs all
values to the digital I/O device that were
written to memory (with calls to
WriteOutputLine) since the last time
ExecuteCachedWrite was called or since
cached-write mode was enabled. Refer to
page 498 for more information of
WriteOutputLine and to page 473 for more
information on ExecuteCachedWrite.
473

Chapter 10

474
ExecuteLatchedRead

Notes (cont.) This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Error text buffer.
TCHAR szText[500];
// Execute a cached-write.
if (pdio->ExecuteCachedWrite() <

0)
{

// Get error text.
pdio->GetErrorText (szText,500);

}

Syntax int ExecuteLatchedRead (
);

Include File C_digitalio.h

Description Executes a latched-read operation.

Parameters None

Notes When latched-read mode is enabled, this
method reads and stores the state of all input
lines into internal memory. Subsequent calls
to ReadInputLine, described on page 492,
return values from memory instead of reading
the input lines directly.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

GetDeviceCaps

Notes (cont.) This method is available only if the device
supports the DIO_CAP_INPUTLINES
capability.

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Error text buffer.
TCHAR szText[500];
// Execute a latched-read.
if (pdio->ExecuteLatchedRead() <

0)
{

// Get error text.
pdio->GetErrorText(szText,500);

}

Syntax int GetDeviceCaps (
int* pnDeviceCaps);

Include File C_digitalio.h

Description Returns the digital I/O capabilities of the
digital I/O device.
475

Chapter 10

476
Parameters

Name:

Description:

pnDeviceCaps

A pointer to a variable in which the digital
I/O capabilities of the digital I/O device are
returned. Possible values are as follows:

• DIO_CAP_INPUTLINES – Device
provides input lines.

• DIO_CAP_INTONLINES – Device
supports interrupt on change.

• DIO_CAP_OUTPUTLINES – Device
provides output lines.

• DIO_CAP_DEVICEPROPS - Device
supports programmable properties

• DIO_CAP_DEVICECONFIG – Device
supports config persistence

• DIO_CAP_CONFIGDIALOG – Device
provides a configuration dialog box.

Notes None

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Variable to receive capabilities
int nDeviceCaps;
//Error text buffer.
TCHAR szText[500];

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

GetDeviceConfig

Example (cont.) //Get the device capabilities
if (pdio->GetDeviceCaps

(&nDeviceCaps) < 0)
{

//Get error text.
Pdio->GetErrorText (szText,
500);

}
//Does the device provide
//input lines?

if (nDeviceCaps &
DIO_CAP_INPUTLINES)

{
//Yes, it does!

}

Syntax int GetDeviceConfig (
LPSTREAM pStream);

Include File C_digitalio.h

Description Returns the configuration to the digital I/O
device.

Parameters

Name:

Description:

pStream

A pointer to a windows stream object that
contains the configuration information for the
digital I/O device.

Notes None
477

Chapter 10

478
GetDeviceConfigFileDesc

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Config stream.
LPSTREAM pStream;
// Error text buffer.
TCHAR szText[500];
// Create or get a reference to a
// stream object, etc.
pStream = pSomeStream;
// Get the current device
//configuration.
if (pdio->GetDeviceConfig(

pStream) < 0)
{

// Get error text.
pdio->GetErrorText(szText,500);

}

Syntax int GetDeviceConfigFileDesc (
LPSTR szFileDesc,
int nBufSize);

Include File C_digitalio.h

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

Description Returns the file description to use when
displaying information about configuration
files that are generated by a digital I/O
device. This text appears in the “Save as type”
box of the “Save config” dialog box that is
used to generate device-specific configuration
files in the device manager.

Parameters

Name:

Description:

szFileDesc

A pointer to the character buffer that receives
the file description.

Name:

Description:

nBufSize

The size of the text buffer (in characters)
pointed to by the szFileDesc parameter. This
value must be greater than 0.

Notes None

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Buffer to receive text.
TCHAR szFileDesc[100]
//Error text buffer.
TCHAR szText[500];
//Get the configuration file

description.
if

(pdio->GetDeviceConfigFileDesc(
szFileExt, 100) < 0)
479

Chapter 10

480
GetDeviceConfigFileExt

Example (cont.) {
//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int GetDeviceConfigFileExt (
LPSTR szFileExt,
int nBufSize);

Include File C_digitalio.h

Description Returns the file extension to use when
generating configuration files for a digital I/O
device. This text appears as the file extension
in the “Save as type” box of the “Save config”
dialog box that is used to generate
device-specific configuration files in the
device manager.

Parameters

Name:

Description:

szFileExt

A pointer to the character buffer that receives
the file extension.

Name:

Description:

nBufSize

The size of the text buffer (in characters)
pointed to by the szFileExt parameter. This
value must be greater than 0.

Notes None

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

GetDeviceProperty

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Buffer to receive text.
TCHAR szFileExt[100];
//Error text buffer.
TCHAR szText[500];
//Get the configuration file

extension.
if (pdio->GetDeviceConfigFileExt(

szFileExt, 100) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int GetDeviceProperty (
int nPropId,
int* pnValue);

Include File C_digitalio.h

Description Returns the value of a vendor-specific
property on a digital I/O device.

Parameters

Name:

Description:

nPropId

A vendor-specific value that identifies the
property to set.
481

Chapter 10

482
GetErrorText

Name:

Description:

pnValue

A pointer to a variable in which the value for
the property is returned.

Notes Supported properties vary from vendor to
vendor. Note that currently this method is not
supported by Data Translation devices. Refer
to your vendor-specific documentation for
more information.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Variable that receives the
//property value
int nValue;
//Error text buffer.
TCHAR szText[500];
//Get the vendor-specific
//property.
if (pdio->GetDeviceProperty

(nPropId, &nValue) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int GetErrorText (
LPSTR szErrorText,
int nBufSize);

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

GetInputLineCount

Include File C_digitalio.h

Description Returns the description of the last error that
occurred.

Parameters

Name:

Description:

szErrorText

A pointer to a buffer in which the error text is
returned.

Name:

Description:

nBufSize

The size of the buffer (in characters).

Notes None

Returned Value

< 0 The method was unsuccessful.

0 The method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Get error text.
pdio->GetErrorText (szText, 500);

Syntax int GetInputLineCount (
int* pnCount);

Include File C_digitalio.h

Description Returns the number of input lines that are
supported by the digital I/O device.
483

Chapter 10

484
GetOutputLineCount

Parameters

Name:

Description:

pnCount

A pointer to an integer variable in which the
number of input lines that are supported by
the digital I/O device is returned. This value
must not be NULL.

Notes This method is available only if the device
supports the DIO_CAP_INPUTLINES
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Variable to receive the count.
int nCount;
//Error text buffer.
TCHAR szText[500];
//Get the number of input lines
//supported by the device.
if (pdio->GetInputLineCount

(&nCount) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int GetOutputLineCount (
int* pnCount);

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

Include File C_digitalio.h

Description Returns the number of output lines that are
supported by the digital I/O device.

Parameters

Name:

Description:

pnCount

A pointer to an integer variable in which the
number of output lines that are supported by
the digital I/O device is returned. This value
must not be NULL.

Notes This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Variable to receive the count.
int nCount;
// Error text buffer.
TCHAR szText[500];
// Get the number of output lines
// supported by the device.
if (pdio->GetOutputLineCount (

&nCount) < 0)
{

// Get error text.
pdio->GetErrorText (szText,500);

}

485

Chapter 10

486
GetReadTimeout

Syntax int GetReadTimeout (
int* pnTimeout);

Include File C_digitalio.h

Description Returns the timeout value for wait-on-read
operations.

Parameters

Name:

Description:

pnTimeout

A pointer to an integer variable in which the
current wait-on-read timeout value, in
milliseconds, is returned. This value must not
be NULL.

Notes None

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Variable to receive the timeout

value
int nTimeout;
//Error text buffer.
TCHAR szText[500];
//Get the current read timeout

value.
if (pdio->GetReadTimeout(

&nTimeout) < 0)

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

IsAsyncWriteDone

Example (cont.) {
//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax bool IsAsyncWriteDone (
);

Include File C_digitalio.h

Description Returns whether asynchronous-write mode is
finished or not.

Parameters None

Notes This method is available only if a device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

TRUE The asynchronous-write operation has
finished.

FALSE The asynchronous-write operation has not
finished.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Is the pending
//asynchronous-write operation
//done?
if (pdio->IsAsyncWriteDone())
{

// Yes, it has.
}

487

Chapter 10

488
IsAsyncWriteEnabled

Example (cont.) else
{

// No, it hasn’t.
}

Syntax bool IsAsyncWriteEnabled (
int nLine);

Include File C_digitalio.h

Description Returns whether asynchronous-write mode is
enabled or disabled.

Parameters None

Notes This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

TRUE Asynchronous-write mode is enabled.

FALSE Asynchronous-write mode is disabled.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Is asynchronous-write mode
// enabled?
if (pdio->IsAsyncWriteEnabled())
{

// Yes, it’s enabled.
}

else
{

// No, it isn’t
}

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

IsCachedWriteEnabled

IsIntOnChangeEnabled

Syntax bool IsCachedWriteEnabled (
);

Include File C_digitalio.h

Description Returns whether cached-write mode is
enabled or disabled.

Parameters None

Notes This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

TRUE Cached-write mode is enabled.

FALSE Cached-write mode is disabled.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Is cached-write mode enabled?
if (pdio->IsCachedWriteEnabled())
{

// Yes, it’s enabled.
}

else
{

// No, it isn’t
}

Syntax bool IsIntOnChangeEnabled (
int nLine);

Include File C_digitalio.h
489

Chapter 10

490
Description Returns whether interrupt-on-change is
enabled or disabled for the specified digital
input line.

Parameters

Name:

Description:

nLine

The input line to read. Values range from 0 to
n – 1, where n is the number of input lines
supported by the digital I/O device.

Notes None

Returned Value

TRUE Interrupt-on-change is enabled for the
specified digital input line.

FALSE Interrupt-on-change is disabled for the
specified digital input line.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Is interrupt-on-change enabled
//for line 0?
if (pdio->IsIntOnChangeEnabled (

0))
{

//Yes, it’s enabled.
}
else
{

//No, it isn’t.
}

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

IsLatchedReadEnabled

IsWaitOnReadEnabled

Syntax bool IsLatchedReadEnabled (
);

Include File C_digitalio.h

Description Returns whether latched-read operations are
enabled or disabled.

Parameters None

Notes None

Returned Value

TRUE Latched-read operations are enabled.

FALSE Latched-read operations are disabled.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Are latched reads enabled?
if (pdio->IsLatchedReadEnabled ()

)
{

//Yes, it’s enabled.
}
else
{

//No, it isn’t.
}

Syntax bool IsWaitOnReadEnabled (
);

Include File C_digitalio.h
491

Chapter 10

492
ReadInputLine

Description Returns whether wait-on-read is enabled or
disabled.

Parameters None

Notes This method is available only if the device
supports the DIO_CAP_INTONCHANGE
capability.

Returned Value

TRUE Wait-on-read is enabled.

FALSE Wait-on-read is disabled.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Is wait-on-read enabled?
if (pdio->IsWaitOnRead ())
{

//Yes, it’s enabled.
}
else
{

//No, it isn’t.
}

Syntax int ReadInputLine (
int nLine,
bool* pbLineState);

Include File C_digitalio.h

Description Returns the current state of the specified
digital input line.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

Parameters

Name:

Description:

nLine

Values range from 0 to n - 1 where n is the
number of input lines supported by the digital
I/O device.

Name:

Description:

pbLineState

A pointer to a Boolean variable in which the
state of the specified digital input line is
returned. If TRUE, the input line is high. If
FALSE, the input line is low. This value must
not be NULL.

Notes None

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Variable to receive the line

state.
BOOL bLineState;
//Error text buffer.
TCHAR szText[500];

//Get the state of line 0.
if (pdio->ReadInputLine (0,

&bLineState) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

493

Chapter 10

494
SetDeviceConfig

Syntax int SetDeviceConfig (
LPSTREAM pStream);

Include File C_digitalio.h

Description Applies the configuration to the digital I/O
device.

Parameters

Name:

Description:

pStream

A pointer to a windows stream object that
contains the configuration information to
apply to the digital I/O device.

Notes None.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example // Digital I/O API object.
CcDigIODevice *pdio;
// Config stream.
LPSTREAM pStream;
// Error text buffer.
TCHAR szText[500];
// Create or get a reference to
// a stream object, that
// contains a valid device
// configuration.
pStream = pSomeStream;
// Restore the current device

configuration.
if (pdio->SetDeviceConfig (

pStream) < 0)

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

SetDeviceProperty

Example (cont.) {
// Get error text.
pdio->GetErrorText(szText,500);

}

Syntax int SetDeviceProperty (
int nPropId,
int nValue);

Include File C_digitalio.h

Description Sets a vendor-specific property on a digital
I/O device.

Parameters

Name:

Description:

nPropId

A vendor-specific value that specifies the
property to set.

Name:

Description:

nValue

The desired value for the property.

Notes Supported properties vary from vendor to
vendor. Note that currently this method is not
supported by Data Translation devices. Refer
to your vendor-specific documentation for
more information.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.
495

Chapter 10

496
SetReadTimeout

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];

//Set the vendor-specific
//property.
if (pdio->SetDeviceProperty

(nPropId, 255) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int SetReadTimeout (
int nTimeout);

Include File C_digitalio.h

Description Sets the timeout value for wait-on-read
operations.

Parameters

Name:

Description:

nTimeout

The timeout value, in milliseconds. This value
must be greater than or equal to 0.

Notes A wait-on-read operation is a read call that
does not return until one or more input lines,
in a preconfigured set of lines, changes state
or until the timeout period expires. If the time
period set using this method expires before a
line changes state, the call returns and an
error is generated.

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

ShowDeviceConfigDialog

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Error text buffer.
TCHAR szText[500];
//Set the read timeout to 1

second.
if (pdio->SetReadTimeout(1000) <

0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int ShowDeviceConfigDialog(
HWND hParent);

Include File C_digitalio.h

Description Displays the device configuration dialog box
for a digital I/O device.

Parameters

Name:

Description:

hParent

The handle of the window that acts as the
parent window for the device configuration
dialog box. This value must be a value
window handle (it cannot be NULL).
497

Chapter 10

498
WriteOutputLine

Notes This method is available only if the device
supports the DIO_CAP_CONFIGDIALOG
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.

Example //Digital I/O API Object.
CcDigIODevice *pdio;
//Parent window.
HWND hParent;
//Error text buffer.
TCHAR szText[500];

//Get a window handle.
hParent = n_hWnd;

//Display the device configuration
//dialog box.
if (pdio->ShowDeviceConfigDialog(

hParent) < 0)
{

//Get error text.
pdio->GetErrorText (szText,
500);

}

Syntax int WriteOutputLine (
int nLine,
bool bLineState,
int nPulseWidth);

Include File C_digitalio.h

Using the Digital I/O Tool API

1

1

1

1

1

1

10

1

1

Description Sets the line state and pulse width for the
specified output line.

Parameters

Name:

Description:

nLine

Specifies the output line to write to. Values
range from 0 to n − 1, where n is the number of
output lines that are supported by the digital
I/O device.

Name:

Description:

bLineState

The desired state of the output line. If TRUE,
the specified output line is set to the high
state. If FALSE, the specified output line is set
to the low state.

Name:

Description:

nPulseWidth

The width of the pulse to generate on the
specified output line, in milliseconds. This
value must be greater than or equal to 0. If 0,
no pulse is generated.

Notes If cached-write mode is enabled, the line state
and the pulse width are stored in memory and
are not written to the specified output line
until the ExecuteCachedWrite method,
described on page 473, is invoked.

This method is available only if the device
supports the DIO_CAP_OUTPUTLINES
capability.

Returned Value

< 0 Method was unsuccessful.

0 Method was successful.
499

Chapter 10

500
Example // Digital I/O API object.
CcDigIODevice *pdio;
// Error text buffer.
TCHAR szText[500];
// Generate a 100 ms high-going
// pulse on output line 0.
if (pdio->WriteOutputLine (0,

TRUE, 100) < 0)

{
// Get error text.
pdio->GetErrorText (szText,500);

}

11
Using the Edge Finder Tool API

Overview of the Edge Finder Tool API . 502

CcEdgeFinder Methods. 504
501

Chapter 11

502
Overview of the Edge Finder Tool API
The API for the Edge Finder tool has one object only: the
CcEdgeFinder class. The CcEdgeFinder class is designed to work
within the DT Vision Foundry environment. Its primary goal is to
extract points, edges, or contours from binary images. You can then
use the found points, edges, or contours to perform a multitude of
measurements.

The procedure for finding edges is as follows:

1. Acquire an image of the desired object.

2. Binarize the image.

3. Supply input ROIs that either enclose the desired contour or go
across the desired point or contour.

4. Specify the parameters used in the extraction process.

5. Extract the points, edges, or contours using the CcEdgeFinder
class.

The class supports rectangle, line, ellipse, poly line, freehand line,
poly freehand, and freehand input ROIs. Point ROIs are not
supported.

Typically, you provide a line, ellipse, poly line, freehand line, poly
freehand, or freehand input ROI to the CcEdgeFinder class whenever
you want to produce a point or edge and not an enclosed contour. In
such cases, the class produces one or more point, freehand line, or
freehand output ROIs. If you want to produce a single enclosed
output ROI (freehand ROI), you provide a rectangle input ROI.
Enclosed output ROIs are suitable, for example, for area and
perimeter measurements.

The CcEdgeFinder class uses a standard constructor and destructor
and the class methods listed in Table 28.

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

Table 28: CcEdgeFinder Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcEdgeFinder(void);

~CcEdgeFinder(void);

CcEdgeFinder
Class Methods

BOOL SetInputRoi(CcRoiBase *InputRoi);

BOOL SetMaskImage(CcBinaryImage *CMaskImage);

BOOL SetObjectColor(int iObjectColor);

BOOL SetSearchRadius(int iSearchRadius);

BOOL SetMinObjectSize(int iMinObjectSize);

BOOL SetMaxObjectSize(int iMaxObjectSize);

BOOL SetMultiEdgeOption(int iOption);

CcRoiBase** FindEdges (int *iNumOfEdges);
503

Chapter 11

504
CcEdgeFinder Methods
This section describes each method of the CcEdgeFinder class in
detail.

SetInputRoi

Syntax BOOL SetInputRoi(
CcRoiBase *InputRoi);

Include File C_EdgeFinder.h

Description Specifies the rectangle, line, ellipse, poly line,
freehand line, poly freehand, or freehand
input ROI.

Parameters

Name:

Description:

InputRoi

Pointer to a DT Vision Foundry ROI class. It
can be either a CcRoiLine, CcRoiRect,
CcRoiPolyLine, CcRoiFreeHandLine,
CcRoiEllipse, CcRoiFreeHand, or
CcRoiPolyFreeHand pointer, cast to the
CcRoiBase pointer.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Notes In DT Vision Foundry, the origin of the image
is the lower, left corner of the image, by
default. Therefore, a rectangle in DT Vision
Foundry is defined as follows: left = x, top =
y1, right = x1, bottom = y.

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

SetMaskImage

Notes (cont.) In contrast, the origin of the image in
Windows is the upper, left corner of the
image, by default. Therefore, a rectangle in
Windows is defined as follows: left = x, top =
y, right = x1, bottom = y1.

Point ROIs are not supported.

Example The following is a sample code fragment:

cRoiLine *CRoiLine=new CcRoiLine;
RECT Line;
BOOL bStatus;
CcEdgeFinder CEdgeFinder;

//Line going from point 2,2 to
//10,10
Line.bottom=2;
Line.top=10;
Line.left=2;
Line.right=10;
//Set the line ROI
CRoiLine->SetRoiImageCord(

(VOID*) &Line);

//Specify the input line ROI
bStatus=CEdgeFinder.SetInputRoi(

(CcRoiBase *)&CRoiLine);

Syntax BOOL SetMaskImage(
CcBinaryImage *CMaskImage);

Include File C_EdgeFinder.h

Description Specifies the binary image from which edges
are extracted.
505

Chapter 11

506
SetObjectColor

Parameters

Name:

Description:

CMaskImage

A pointer to an image from which edges are
extracted. The image must be binarized (all
pixels must have a value of either 0 or 1).

Return Values

TRUE Image was valid.

FALSE Image was invalid.

Example The following is a sample code fragment:

CcBinaryImage *CMaskImage;
CcEdgeFinder CEdgeFinder;
BOOL Status;
//Fill the above image however you
//wish
. . . .
//Pass it to the Edge Finder class
Status = CEdgeFinder.SetMaskImage(
 CMaskImage);

Syntax BOOL SetObjectColor(
int iObjectColor);

Include File C_EdgeFinder.h

Description Specifies the color of the object (white or
black) that contains the edge you are
searching for. The edge is placed within the
object.

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

SetSearchRadius

Parameters

Name:

Description:

iObjectColor

Object color. The value can be 0 (white) or 1
(black).

Return Values

TRUE Successful.

FALSE Unsuccessful.

Example The following is a sample code fragment:

int iColor;
CcEdgeFinder CEdgeFinder;
BOOL Status;

// Set color to black
iColor=1;
Status=CEdgeFinder.SetObjectColor(

 iColor);

Syntax BOOL SetSearchRadius(
int iSearchRadius);

Include File C_EdgeFinder.h

Description For line, ellipse, poly line, freehand line, poly
freehand, or freehand input ROIs, specifies
the number of pixels to include in an edge.
507

Chapter 11

508
Description (cont.) For example, assume that a line input ROI is
placed across the desired edge. The pixel that
belongs to the edge and is exactly under the
line input ROI is collected first. Then, the
number of pixels specified by iSearchRadius is
collected first to one side of the line ROI and
then to the other side of the line ROI. The total
number of pixels contained in the generated
edge is (2 x iSearchRadius) + 1.

Parameters

Name:

Description:

iSearchRadius

The number of pixels to include in a point or
edge. For example, if iSearchRadius equals 0,
point ROIs are generated. If iSearchRadius is
between 1 and the total number of pixels in
the edge, freehand line ROIs are generated. If
iSearchRadius is greater than the total number
of pixels in the edge, freehand ROIs are
generated.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Notes Point and rectangle ROIs are not supported.

Example The following is a sample code fragment:

int iSearchRadius;
CcEdgeFinder CEdgeFinder;
BOOL Status;
// Set the radius
iSearchRadius=10;

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

SetMinObjectSize

Example (cont.) // Specify that 21 pixels should
// be found in the edge
Status=CEdgeFinder.SetSearchRadius

(iSearchRadius);

Syntax BOOL SetMinObjectSize(
int iMinObjectSize);

Include File C_EdgeFinder.h

Description For rectangle input ROIs only, specifies the
total number of pixels in an object, below
which the object is rejected by the algorithm.
This value, combined with iMaxObjectSize,
allows you to focus on a particular object if
you are forced to enclose more than a single
object in the rectangle ROI.

Parameters

Name:

Description:

iMinObjectSize

The minimum object size, specified as the
total number of pixels. The value must be
greater than or equal to 4.

Return Values

TRUE Input was valid.

FALSE Input was invalid.
509

Chapter 11

510
SetMaxObjectSize

Example The following is a sample code fragment:

int iMinObjectSize;
CcEdgeFinder CEdgeFinder;
BOOL Status;
// Set minimum object size
iMinObjectSize=10;
// Specify the number of pixels
//below which the object is
//rejected
Status=CEdgeFinder.

SetMinObjectSize(
iMinObjectSize);

Syntax BOOL SetMaxObjectSize(
int iMaxObjectSize);

Include File C_EdgeFinder.h

Description For rectangle input ROIs only, specifies the
total number of pixels in an object, above
which the object is rejected by the algorithm.
This value, combined with iMinObjectSize,
allows you to focus on a particular object if
you are forced to enclose more than a single
object in the rectangle ROI.

Parameters

Name:

Description:

iMaxObjectSize

The maximum object size, specified as the
total number of pixels. The value must be
greater than or equal to 4.

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

SetMultiEdgeOption

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

int iMaxObjectSize;
CcEdgeFinder CEdgeFinder;
BOOL Status;
// Set minimum object size
iMaxObjectSize=10;
// Specify the number of pixels
// above which the object is
// rejected
Status=CEdgeFinder.

SetMaxObjectSize(
iMaxObjectSize);

Syntax BOOL SetMultiEdgeOption(
int iOption);

Include File C_EdgeFinder.h

Description For line, ellipse, poly line, freehand line, poly
freehand, or freehand input ROIs, specifies
the edges to find.

Parameters

Name:

Description:

iOption

Specifies one of the following values:

• 0 - FIRST_EDGE − Only the left-most edge
is found.
511

Chapter 11

512
FindEdges

Description (cont.): • 1 - LAST_EDGE − Only the right-most
edge is found.

• 2 - FALLING_EDGE − All falling edges
(white to black transitions) are found.

• 3 - RISING_EDGE − All rising edges (black
to white transitions) are found.

• 4 - ALL_EDGE − All edges are found.

Return Values

TRUE iOption is greater than or equal to 0 and less
than or equal to 4.

FALSE iOption is less than 0 or greater than 4.

Notes Currently this method does not support
rectangle or point input ROIs.

Example The following is a sample code fragment:

CcEdgeFinder CEdgeFinder;
int iOption;
iOption = ALL_EDGE;
BOOL Status;

//Find all edges.
Status = CEdgeFinder.

SetMultiEdgeOption(iOption);

Syntax CcRoiBase** FindEdges(
int *iNumOfEdges);

Include File C_EdgeFinder.h

Using the Edge Finder Tool API

1

1

1

1

1

1

11

11

1

Description Generates one or more ROIs representing the
found edges, points, or contours. For line,
ellipse, poly line, poly freehand, freehand, or
freehand line ROIs, point, freehand, or
freehand line ROIs are generated.

For a rectangle ROI, a single freehand ROI is
generated.

Parameters

Name:

Description:

iNumOfEdges

A pointer to an integer that records the
number of found edges.

Return Values

A list of pointers to the ROIs
that describe the edges.

Edges were detected.

NULL No edge was detected.

Notes You cannot generate multiple ROIs from a
rectangle ROI.

Example The following is a sample code fragment:

CcRoiBase *CNewRois;
CcRoiBase *CInputRoi;
CcBinaryImage *CImageMask;
int iSearchRadius;
BOOL bSearchDirection;
int iColor,

iMinObjectSize,
iMaxObjectSize;

CcEdgeFinder CEdgeFinder;

//Set the above variables
//appropriately!
. . . .
513

Chapter 11

514
Example (cont.) // Set class input parameters
CEdgeFinder.SetInputRoi(

CInputRoi);
CEdgeFinder.SetMaskImage((

 CcBinaryImage *)CImageMask);
CEdgeFinder.SetSearchRadius(

 iSearchRadius);
CEdgeFinder.SetObjectColor(

iColor);
CEdgeFinder.SetMinObjectSize(

 iMinObjectSize);
CEdgeFinder.SetMaxObjectSize(

 iMaxObjectSize);
CEdgeFinder.SetMultiEdgeOption(

iMultiEdgeOption);
// Generate the new ROIs
CNewRois = CEdgeFinder.FindEdges(

&iNumOfEdges);

//Verify the output
if (CNewRois ==NULL)
{
 Error("Failed to generate a

new ROI.");
}
for (int I=0;I<iNumOfEdges;I++)
{

if (CnewROIs[I]!=NULL)
{
. . . .
}

}

12
Using the File Manager Tool

API
Overview of the File Manager Tool API 516

CcFileConv Methods . 517

Example Program Using the File Manager Tool API 522
515

Chapter 12

516
Overview of the File Manager Tool API
The API for the File Manager tool has one object only: the CcFileConv
class. This tool opens multiple file formats so that images can be used
with DT Vision Foundry, and saves an DT Vision Foundry CcImage
image class in a standard BMP or TIFF file format.

For further information on CcImage objects, refer to the example
program at the end of this chapter.

The CcFileConv class uses a standard constructor and destructor and
the class methods listed in Table 29.

Table 29: CcFileConv Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcFileConv();

~ CcFileConv();

CcFileConv Class
Methods

CcImage* LoadImage(char* cFileName,int iGrayScaleFlag);

int SaveImage(CcImage* CImage,char* cFileName,
 short nFlag);

int SetSizeOptions(int iWidthFlag);

Using the File Manager Tool API

12

1

1

1

1

1

1

12

1

CcFileConv Methods
This section describes each method of the CcFileConv class in detail.

LoadImage

Syntax CcImage* LoadImage(
 char* cFileName,
 int iGrayScaleFlag);

Include File C_Fconv.h

Description Loads an image file from disk.

Parameters

Name:

Description:

cFileName

Full path name of the file to open.

Name:

Description:

iGrayScaleFlag

If the image in the file is a grayscale image,
open the image as one of the following:

• LOAD_AS_8BIT − Creates an 8-bit
grayscale image and opens the image into
it.

• LOAD_AS_16BIT − Creates a 16-bit
grayscale image and opens the image into
it.

• LOAD_AS_32BIT − Creates a 32-bit
grayscale image and opens the image into
it.

• LOAD_AS_FLOAT − Creates a
floating-point grayscale image and opens
the image into it.
517

Chapter 12

518
Description (cont.): • LOAD_AS_RGB − Creates a 24-bit RGB
color image and opens the image into it.

• LOAD_AS_HSL − Creates a 24-bit HSL
image and opens the image into it.

Notes The LoadImage() method creates the image,
opens the image file, and returns an DT Vision
Foundry CcImage image pointer. If the image
you are opening is a 24-bit color image, the
iGrayScaleFlag is ignored.

It is your responsibility to free the memory for
the returned image (or make sure something
else frees the memory for the image). If you
need to free the memory for the image, use the
delete operator.

If you are creating a custom tool to be used in
conjunction with the DT Vision Foundry main
application, you can add the image to the
main application’s image list. In this situation,
the main application frees the memory for you
when the application terminates. For
information on creating custom tools, see
Chapter 29 starting on page 937. For
information on the main application, see
Chapter 2 starting on page 11.

Return Values

NULL Unsuccessful.

A valid image pointer. Successful.

Using the File Manager Tool API

12

1

1

1

1

1

1

12

1

SaveImage

Syntax int SaveImage(
 CcImage* CImage,
 char* cFileName,
 short nFlag);

Include File C_Fconv.h

Description Saves an DT Vision Foundry Image object to
disk.

Parameters

Name:

Description:

CImage

Pointer to the image to save.

Name:

Description:

cFileName

Full path name of the file to save.

Name:

Description:

nFlag

Flag that determines the file format and
compression to use when saving the image;
the value for nFlag can be one of the following:

• FILETYPE_BMP − Saves the image as a
standard Windows bitmap file (BMP).

• FILETYPE_TIFF_NO_COMPRESSION −
Saves the image as a standard TIFF file
with no compression.

• FILETYPE_TIFF_DEFAULT − Saves the
image as a standard TIFF file with
compression set to automatic.

• FILETYPE_TIFF_PACKBITS − Saves the
image as a standard TIFF file with
compression set to “run-length encode”.
519

Chapter 12

520
SetSizeOptions

Notes The CImage parameter is a pointer to an DT
Vision Foundry CcImage object. This can be a
pointer to any derived image type: 8-bit
grayscale, 16-bit grayscale, 32-bit grayscale,
floating-point grayscale, or 24-bit color. The
nFlag parameter is used with all image types.
If the image type is 32-bit grayscale or
floating-point grayscale, use only the
FILETYPE_BMP flag. If you try to save a
32-bit or floating-point grayscale image with
any of the TIFF options, SaveImage() fails.
SaveImage() does not free the Image object.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetSizeOptions(
int iWidthFlag);

Include File C_Fconv.h

Description Sets how a file is opened if its width is not
divisible by four. It has no effect on images
with a width divisible by four.

Using the File Manager Tool API

12

1

1

1

1

1

1

12

1

Parameters

Name:

Description:

iWidthFlag

Flag determines how to open an image whose
width is not divisible by four; its value can be
one of the following:

• IMAGE_WIDTH_TRIM − Trims the width
of the image so that the width is divisible
by four. For example, if your image is 457
pixels wide, the new width of the image is
456. The extra pixels are discarded. The
height of the image is not effected.

• *IMAGE_WIDTH_EXACT − The default
value of iWidthFlag. If the image is not
divisible by four, the image fails to open.
This option allows only images divisible
by four to be opened.

• IMAGE_WIDTH_ADD − Adds to the
width of the image so that the width is
divisible by four. For example, if your
image is 457 pixels wide, the new width of
the image is 460. The extra pixels added to
the width have a value of 0. The height of
the image is not effected.

Notes DT Vision Foundry images must be divisible
by four. This is due to the way DT Vision
Foundry accesses images in memory.

Return Values

NULL Unsuccessful.

A valid image pointer. Successful.
521

Chapter 12

522
Example Program Using the File Manager
Tool API

This example opens three different images in three different file
formats (PCX, TIFF, and BMP), and saves all three images as
compressed TIFF files. The images are opened as 8-bit grayscale
images if they are grayscale images or as 24-bit color images if they
are color images. If they are color images, the LOAD_AS_8BIT flag is
ignored. After they are opened (or loaded), you can use the images as
normal DT Vision Foundry Image objects.

Note: This example is made from code fragments with error
checking removed. In an actual program, you should check return
values and pointers.

int OpenSaveImages(void)
{
CcImage* CImage1;
CcImage* CImage2;
CcImage* CImage3;
CcFileConv CFileConv;

//Open the three images
CImage1 = CFileConv.LoadImage(“C:\\Image1.pcx”,

LOAD_AS_8BIT);
CImage2 = CFileConv.LoadImage(“C:\\Image2.tif”,

LOAD_AS_8BIT);
CImage3 = CFileConv.LoadImage(“C:\\Image3.bmp”,

LOAD_AS_8BIT);

//Note: You could now do something with the
images...

Using the File Manager Tool API

12

1

1

1

1

1

1

12

1

//Save all images as compressed TIFF files
CFileConv.SaveImage(CImage1,”C:\\Image1.tif”,

FILETYPE_TIFF_PACKBITS);
CFileConv.SaveImage(CImage2,”C:\\Image2.tif”,

FILETYPE_TIFF_PACKBITS);
CFileConv.SaveImage(CImage3,”C:\\Image3.tif”,

FILETYPE_TIFF_PACKBITS);

//We must now free the memory for the images
because the //LoadImage() method allocated memory
delete CImage1;
delete CImage2;
delete CImage3;
}

523

Chapter 12

524

13
Using the Filter Tool API

Overview of the Filter Tool API . 526

CcConvolution Methods . 527

Example Program Using the Filter Tool API 536
525

Chapter 13

526
Overview of the Filter Tool API
The API for the Filter tool has one object only: the CcConvolution
class. This tool performs a convolution on a input image (derived
from class CcImage), and places the result in an output image. This
operation is performed with respect to the given ROI (derived from
class CcRoiBase).

The CcConvolution class uses a standard constructor and destructor
and the class methods listed in Table 30.

Table 30: CcConvolution Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcConvolution();

~CcConvolution();

CcConvolution
Class Methods

int SetKernel(STKERNEL* stKer1,STKERNEL* stKer2);

int GetKernel(STKERNEL* stKer1,STKERNEL* stKer2);

int DoConvolution(CcImage* CImageIn,
 CcImage* CImageOut, CcRoiBase* CRoi,float fGain,
 float fOffset,float fDivide, float fLowThreshold,
 float fHiThreshold, int iThresholdFlag);

int DoConvolutionRGB(Cc24BitRGBImage* CImageIn,
 Cc24BitRGBImage* CImageOut,CcRoiBase* CRoi,
 float fGain,float fOffset,float fDivide,float fLowThreshold,
 float fHiThreshold,int iThresholdFlag);

int DoConvolutionHSL(Cc24BitHSLImage* CImageIn,
 Cc24BitHSLImage* CImageOut,CcRoiBase* CRoi,
 float fGain,float fOffset,float fDivide,float fLowThreshold,
 float fHiThreshold,int iThresholdFlag);

int RestoreKernel(char* cFileName);

int SaveKernel(char* cFileName);

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
CcConvolution Methods
This section describes each method of the CcConvolution class in
detail.

SetKernel

Syntax int SetKernel(
 STKERNEL* stKer1,
 STKERNEL* stKer2);

Include File C_Convlu.h

Description Sets kernel 1 and kernel 2 for the performed
convolution.

Parameters

Name:

Description:

stKer1

Pointer to structure of type STKERNEL.This
parameter holds information for kernel 1.

Name:

Description:

stKer2

Pointer to a structure of type STKERNEL. This
parameter holds information for kernel 2.

Notes This method sets the kernels that are used by
the class when the method DoConvolution()
is called.

The kernels are of type STKERNEL and are
defined as follows:

struct KernelTag {
int iWidth;
int iHeight;
int iXCenterOffset;
int iYCenterOffset;
527

Chapter 13

528
Notes (cont.) int iKernel[7][7];
int iKernelFlag;
};
typedef KernelTag STKERNEL;

The entries for this structure are as follows:

• iWidth − The width of the kernel in pixels.

• iHeight − The height of the kernel in
pixels.

• iXCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
x-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• iYCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
y-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• Kernel[7][7] − A 7 x 7 array of values to
hold the coefficients of the kernel.
Depending on the width and height of the
kernel, not all of these values can be used.

• iKernelFlag − A flag to determine whether
to use only kernel 1 in the convolution or
to use both kernel 1 and kernel 2 in the
convolution. Make sure this flag is the
same for both kernels. This flag can take
one of the following values:

− CONVLU_SINGLE_KERNEL − Use
kernel 1 only.

− CONVLU_TWO_KERNEL − Use both
kernels.

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
GetKernel

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetKernel(
 STKERNEL* stKer1,
 STKERNEL* stKer2);

Include File C_Convlu.h

Description Returns the settings of kernel 1 and kernel 2
that are used in the performed convolution.

Parameters

Name:

Description:

stKer1

Pointer to a structure of type STKERNEL. This
parameter holds information for kernel 1.

Name:

Description:

stKer2

Pointer to a structure of type STKERNEL. This
parameter holds information for kernel 2.

Notes This method returns the kernels that are used
by the class when the method
DoConvolution() is called. The kernels are of
type STKERNEL and are defined as follows:

struct KernelTag {
int iWidth;
int iHeight;
int iXCenterOffset;
int iYCenterOffset;
529

Chapter 13

530
Notes (cont.) int Kernel[7][7];
int iKernelFlag;

};
typedef KernelTag STKERNEL;

The entries for this structure are as follows:

• iWidth − The width of the kernel in pixels.

• iHeight − The height of the kernel in
pixels.

• iXCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
x-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• iYCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
y-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• Kernel[7][7] − A 7 x 7 array of values to
hold the coefficients of the kernel.
Depending on the width and height of the
kernel, not all of these values can be used.

• iKernelFlag − A flag to determine whether
to use only kernel 1 in the convolution or
to use both kernel 1 and kernel 2 in the
convolution. Make sure this flag is the
same for both kernels. This flag can take
one of the following values:

− CONVLU_SINGLE_KERNEL − Use
kernel 1 only.

− CONVLU_TWO_KERNEL − Use both
kernels.

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
DoConvolution/DoConvolutionRGB/DoConvolutionHSL

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int DoConvolution(
 CcImage* CImageIn,
 CcImage* CImageOut,
 CcRoiBase* CRoi,
 float fGain,
 float fOffset,
 float fDivide,
 float fLowThreshold,
 float fHiThreshold,
 int iThresholdFlag);

Include File C_Convlu.h

Description Performs the convolution for the given image
with respect to the given ROI.

Parameters

Name:

Description:

CImageIn

Image derived from the CcImage class and
used as the input image.

Name:

Description:

CImageOut

Image derived from the CcImage class and
used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.
531

Chapter 13

532
Name:

Description:

fLowThreshold

Low threshold limit; this parameter is not
used unless it is specified by iThresholdFlag.

Name:

Description:

fGain

Gain that is applied to the resulting data.

Name:

Description:

fOffset

Offset that is applied to the resulting data.

Name:

Description:

fDivide

Division that is applied to the resulting data.

Name:

Description:

fLowThreshold

Low threshold limit; this parameter is not
used unless it is specified by iThresholdFlag.

Name:

Description:

fHiThreshold

High threshold limit; this parameter is not
used unless it is specified by iThresholdFlag.

Name:

Description:

iThresholdFlag

Flag that determines whether thresholding is
performed. A value of 1 indicates that
thresholding is performed. A value of 0
indicates that thresholding is not performed.

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
Notes This method performs a convolution on the
given input image with respect to the given
ROI. It places the output in the given output
image. After calculating the convolution,
fGain and fOffset are always applied to the
output value. The output value is then
thresholded to the fLowThreshold and
fHiThreshold limits, providing that the
iThresholdFlag is set to 1.

Within the CcConvolution class are private
methods that are called by this method,
provided that certain conditions are met.
These private methods are called for speed of
execution.

The conditions that produce faster execution
of a convolution are the following:

• Input image is one of the following: 8-bit
grayscale, 32-bit grayscale, or
floating-point grayscale.

• ROI is rectangular or elliptical.

• 3. Kernel is a 3 x 3 centered kernel.

(You can have a dual-kernel convolution and
still meet these criteria; both kernels must be 3
x 3 and centered.)

You do not have to do anything special to
invoke the faster methods; the class does it
automatically.

Returned Values

−1 Unsuccessful.

0 Successful.
533

Chapter 13

534
RestoreKernel

SaveKernel

Syntax int RestoreKernel(
char* cFileName);

Include File C_Convlu.h

Description Restores the kernels that were saved on disk.

Parameters

Name:

Description:

cFileName

Full path name of a file that contains the
kernels you wish to restore.

Notes This method opens a set of kernels (kernel 1
and kernel 2) that were stored in the file
cFileName. It restores all the information for
kernel 1 and kernel 2 that is defined in the
structure STKERNEL, not just the coefficients
of the kernels.

Returned Values

−1 Unsuccessful.

0 Successful.

Syntax int SaveKernel(char* cFileName);

Include File C_Convlu.h

Description Saves the kernels to disk.

Parameters

Name:

Description:

cFileName

Full path name of a file that is created to hold
the kernel information.

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
Notes This method saves the set of kernels (kernel 1
and kernel 2) used by the class CcConvolution
to disk. It saves all the information given in
the structure STKERNEL, not just the kernel
coefficients. You can later retrieve this
information using RestoreKernel().

Returned Values

−1 Unsuccessful.

0 Successful.
535

Chapter 13

536
Example Program Using the Filter Tool
API

This example program performs a Sobel filter operation on an 8-bit
input image with respect to a given rectangular ROI. It then places
the output into a newly-created, blank 32-bit image and saves this
image to disk.

Note: This example is made from code fragments from the Filter
tool with error checking removed. In an actual program, you should
check return values and pointers.

int SomeFunction(void)
{
CcConvolution* CFilter;
//Object to perform convolution
CcGrayImage256* CImageIn;
//8-bit grayscale input image
CcGrayImageInt32* CImageOut;
//32-bit grayscale output image
CcRoiRect* CRoi;
//Rectangular ROI
int iHeight, iWidth;
RECT stROI;

//Create objects
CFilter = new CcConvolution();
CImageIn = new CcGrayImage256();
CImageOut = new CcGrayImageInt32();
CRoi = new CcRoiRect();

//Open input image from disk
CImageIn->OpenBMPFile(“image1.bmp”);

Using the Filter Tool API

13

1

1

1

1

1

1

1

13
//Create blank image of same size as input image
for output image

CImageIn->GetHeightWidth(&iHeight,&iWidth);
CImageOut->MakeBlankBMP(iHeight,iWidth,0,”Output”);

//Create rectangular ROI
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRoi->SetRoiImageCord((VOID*)&stROI);

//Open Sobel kernel to perform Sobel filter
CFilter->RestoreKernel(“Sobel.ker”);

//Run the filter (gain of 1, offset of 0,
//no thresholding)
CFilter->DoConvolution(CImageIn,CImageOut,CRoi,1,0,

1,0,0,0);

//Save output image to disk
CImageOut->SaveBMPFile(“Output.bmp”);

//Free memory
delete CFilter;
delete CImageIn;
delete CImageOut;
delete Croi;

return(0);

}

537

Chapter 13

538

14
Using the Gauge Tool API
Overview of the Gauge Tool API . 540

CcRoiGauge Methods . 544
539

Chapter 14

540
Overview of the Gauge Tool API
The API for the Gauge tool has one object only: the CcRoiGauge class.
The CcRoiGauge class is designed to work within the DT Vision
Foundry environment. It is used to perform measurements on
various ROI objects. The results of the measurements are returned in
pixels, degrees, or the measurement units you specified in a
calibration object. This class can accept ROIs from more than one
image, allowing for measurements using more than one camera (in
this case, calibration is required).

Any output from the CcRoiGauge class is passed in the stMResult
structure:

typedef struct
{

float fResult;
} stMResult;

The fResult variable is used to pass the result of a gauging operation.
It contains a measurement value in either pixels or calibrated units (if
a calibration object is provided).

The CcRoiGauge class uses a standard constructor and destructor
and the class methods listed in Table 31.

Table 31: CcRoiGauge Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcRoiGauge(void);

~CcRoiGauge(void);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
CcRoiGauge
Class Methods

BOOL SetRoi1(CcRoiBase * InputRoi);

BOOL SetRoi2(CcRoiBase * InputRoi);

BOOL SetRoi3(CcRoiBase * InputRoi);

BOOL SetImage1(CcImage * InputImage);

BOOL SetImage2(CcImage * InputImage);

BOOL SetImage3(CcImage * InputImage);

BOOL SetAngle(float Angle);

MinDistance();

MaxDistance();

AvgDistance();

XCoordinate();

YCoordinate();

Width();

Height();

AngleAtMiddlePoint();

AngleFromXaxis();

Area();

Perimeter();

Distance();

DirectedDistance();

LineLength();

IntersectionAngle();

MinDirectedDistance();

Table 31: CcRoiGauge Object Methods (cont.)

Method Type Method Name
541

Chapter 14

542
CcRoiGauge
Class Methods
(cont.)

MaxDirectedDistance();

MinOppositeDistance();

MaxOppositeDistance();

MinPerpendicularDistance();

MaxPerpendicularDistance();

Roundness();

GrayAverage();

RedAverage();

GreenAverage();

BlueAverage();

HueAverage();

SatAverage();

LumAverage();

GrayValue();

RedValue();

GreenValue();

BlueValue();

HueValue();

SatValue();

LumValue();

XIntersection();

Table 31: CcRoiGauge Object Methods (cont.)

Method Type Method Name

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
CcRoiGauge
Class Methods
(cont.)

YIntersection();

StMResult * GetResults();

CcList * GetMethodList();

HeightBoundingRect();

WidthBoundingRect();

AngleBoundingRect();

Table 31: CcRoiGauge Object Methods (cont.)

Method Type Method Name
543

Chapter 14

544
CcRoiGauge Methods
This section describes each method of the CcRoiGauge class in detail.

SetRoi1

Syntax BOOL SetRoi1(
CcRoiBase *InputRoi);

Include File C_RoiGauge.h

Description Specifies input ROI number 1.

Parameters

Name:

Description:

InputRoi

Pointer to a DT Vision Foundry ROI class. All
ROIs are supported.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

CcRoiLine *CRoiLine=new CcRoiLine;
RECT Line;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Line going from point 2,2
//to 10,10
Line.bottom=2;
Line.top=10;
Line.left=2;
Line.right=10;

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
SetRoi2

Example (cont.) //Set the line ROI
CRoiLine->SetRoiImageCord((VOID*)

 &Line);
//Specify input ROI 1
bStatus=CRoiGauge.SetRoi1(

 (CcRoiBase *)&CRoiLine);

Syntax BOOL SetRoi2(
CcRoiBase *InputRoi);

Include File C_RoiGauge.h

Description Specifies input ROI number 2.

Parameters

Name:

Description:

InputRoi

Pointer to a DT Vision Foundry ROI class. All
ROIs are supported.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

CcRoiLine *CRoiLine=new CcRoiLine;
RECT Line;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Line going from point 2,2 to
//10,10
Line.bottom=2;
Line.top=10;
545

Chapter 14

546
SetRoi3

Example (cont.) Line.left=2;
Line.right=10;
//Set the line ROI
CRoiLine->SetRoiImageCord((VOID*)
 &Line);
//Specify input ROI 2
bStatus=CRoiGauge.SetRoi2(

 (CcRoiBase *)&CRoiLine);

Syntax BOOL SetRoi3(
CcRoiBase *InputRoi);

Include File C_RoiGauge.h

Description Specifies input ROI number 3.

Parameters

Name:

Description:

InputRoi

Pointer to DT Vision Foundry ROI class. All
ROIs are supported.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

CcRoiLine *CRoiLine=new CcRoiLine;
RECT Line;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Line going from point 2,2 to
//10,10

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
SetImage1

Example (cont.) Line.bottom=2;
Line.top=10;
Line.left=2;
Line.right=10;

//Set the line ROI
CRoiLine->SetRoiImageCord((VOID*)
 &Line);
//Specify input ROI 3
bStatus=CRoiGauge.SetRoi3(

 (CcRoiBase *)&CRoiLine);

Syntax BOOL SetImage1(
CcImage *InputImage);

Include File C_RoiGauge.h

Description Specifies input image number 1.

Images are used only for color/grayscale
pixel-averaging measurements. Any
calibration object attached to an image is
retrieved and used by the Gauge tool.

Parameters

Name:

Description:

InputImage

Pointer to a DT Vision Foundry Image class.

Return Values

TRUE Input was valid.

FALSE Input was invalid.
547

Chapter 14

548
SetImage2

Example The following is a sample code fragment:

CcImage *CImage;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Fill the image somehow
. . . .
//Specify input image 1
bStatus=CRoiGauge.SetImage1(

CImage);

Syntax BOOL SetImage2(
CcImage *InputImage);

Include File C_RoiGauge.h

Description Specifies input image number 2.

Images are used only for color/grayscale
pixel-averaging measurements. Any
calibration object attached to an image is
retrieved and used by the Gauge tool.

Parameters

Name:

Description:

InputImage

Pointer to a DT Vision Foundry Image class.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
SetImage3

Example The following is a sample code fragment:

CcImage *CImage;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Fill the image somehow
. . . .
//Specify input image 2
bStatus=CRoiGauge.

SetImage2(CImage);

Syntax BOOL SetImage3(
CcImage *InputImage);

Include File C_RoiGauge.h

Description Specifies input image number 3.

Images are used only for color/grayscale
pixel-averaging measurements. Any
calibration object attached to an image is
retrieved and used by the Gauge tool.

Parameters

Name:

Description:

InputImage

Pointer to a DT Vision Foundry Image class.

Return Values

TRUE Input was valid.

FALSE Input was invalid.
549

Chapter 14

550
SetAngle

Example The following is a sample code fragment:

CcImage *CImage;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Fill the image somehow
. . . .
//Specify input image 3
bStatus=CRoiGauge.SetImage3(

CImage);

Syntax BOOL SetAngle(
float Angle);

Include File C_RoiGauge.h

Description Specifies the angle used for directed and
opposite measurements.

For more information, refer to the
DirectedDistance, MinDirectedDistance,
MaxDirectedDistance,
MinOppositeDistance, and
MaxOppositeDistance methods.

Parameters

Name:

Description:

Angle

The angle value in degrees. The value can
range from 0 to 359.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
MinDistance

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

float Angle;
BOOL bStatus;
CcRoiGauge CRoiGauge;

//Set the angle
Angle = 23.0;

//Specify the angle
bStatus=CRoiGauge.SetAngle(Angle);

Syntax MinDistance(
);

Include File C_RoiGauge.h

Description Computes the minimum distance between
two ROI objects.

The algorithm finds the two points, each
belonging to a separate ROI, that are closest to
each other. Freehand, ellipse, and point ROIs
are supported.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.
551

Chapter 14

552
Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1,*CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOO bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//holds result of a measurement

//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.MinDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
MaxDistance

Syntax MaxDistance(
);

Include File C_RoiGauge.h

Description Computes the maximum distance between
two ROI objects.

The algorithm finds the two points, each
belonging to a separate ROI, that are the
farthest apart from each other. Freehand,
ellipse, and point ROIs are supported.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//holds result of a measurement

//Fill the images and rois with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
553

Chapter 14

554
AvgDistance

Example (cont.) CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.MaxDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax AvgDistance(
);

Include File C_RoiGauge.h

Description Computes the average distance between two
ROI objects.

Measurements between point and poly
freehand ROIs and between point and
freehand ROIs are supported.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
XCoordinate

Example (cont.) //holds result of a measurement

//Fill the images and rois with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.AvgDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax XCoordinate(
);

Include File C_RoiGauge.h

Description Returns the x-axis coordinate value for a point
ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.
555

Chapter 14

556
YCoordinate

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.XCoordinate();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax YCoordinate(
);

Include File C_RoiGauge.h

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Description Returns the y-axis coordinate value for a point
ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.YCoordinate();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();
557

Chapter 14

558
Width

Syntax Width(
);

Include File C_RoiGauge.h

Description For an ellipse or rectangle ROI object, returns
the width (dimension with respect to the
x-axis).

For a line, poly freehand, or freehand ROI
object, returns the width of the boundry box
that encompasses the ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;

CcRoiGauge CRoiGauge;
stMResult *pResult;
//holds result of a measurement
//Fill the images and rois with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14

Height

Example (cont.) CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.Width();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax Height(
);

Include File C_RoiGauge.h

Description For an ellipse or rectangle ROI object, returns
the height (dimension with respect to the
y-axis).

For a line, poly freehand, or freehand ROI
object, returns the height of the boundary box
that encompasses the ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
559

Chapter 14

560
AngleAtMiddlePoint

Example (cont.) stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.Height();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax AngleAtMiddlePoint(
);

Include File C_RoiGauge.h

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Description Computes the angle between two vectors
formed by three point ROIs. The first vector
points from the middle point ROI to the first
point ROI; the second vector points from
middle point ROI to the last point ROI. The
angle is formed by going in a
counterclockwise direction from the first
vector to the second vector and can range
from 0 to 360 degrees.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
561

Chapter 14

562
AngleFromXaxis

Example (cont.) // Invoke the gauging method
CRoiGauge.AngleAtMiddlePoint();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax AngleFromXaxis(
);

Include File C_RoiGauge.h

Description Computes the angle between the x-axis and a
line ROI or between the x-axis and a line
formed by two point ROIs.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Area

Example (cont.) CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.AngleFromXaxis();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax Area(
);

Include File C_RoiGauge.h

Description Computes the area of a rectangle, ellipse, poly
freehand, or freehand ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
563

Chapter 14

564
Perimeter

Example (cont.) //Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.Area();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax Perimeter(
);

Include File C_RoiGauge.h

Description Computes the perimeter of a rectangle, ellipse,
poly freehand, or freehand ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Distance

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.Perimeter();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax Distance(
);

Include File C_RoiGauge.h
565

Chapter 14

566
Description Computes the distance between two point
ROIs or between a point ROI and a line ROI.
To compute the distance between a point ROI
and a line ROI, the algorithm first creates a
new line that passes through the point ROI
and is perpendicular to the line ROI,
extending the line ROI if necessary. The
algorithm then calculates the distance
between the point ROI and the intersection
point between the line ROI and the new line.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;

//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
DirectedDistance

Example (cont.) CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.Distance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax DirectedDistance(
);

Include File C_RoiGauge.h

Description Computes the directed distance between two
point ROIs. To do this, the algorithm creates
two parallel lines, both perpendicular to a line
at the specified angle, and shifts the lines until
each line crosses one of the point ROIs. The
algorithm then creates a third line that is
perpendicular to the two parallel lines. The
directed distance is the distance between the
two parallel lines.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
567

Chapter 14

568
LineLength

Example (cont.) CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.DirectedDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax LineLength(
);

Include File C_RoiGauge.h

Description Computes the distance between the
end-points of a line ROI.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
IntersectionAngle

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.LineLength();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax IntersectionAngle(
);

Include File C_RoiGauge.h

Description Computes the angle formed by two line ROIs.
569

Chapter 14

570
Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.IntersectionAngle();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
MinDirectedDistance

Syntax MinDirectedDistance(
);

Include File C_RoiGauge.h

Description Computes the minimum directed distance
between either a point ROI and a freehand
ROI or between two freehand ROIs. For more
information, refer to the DirectedDistance
method.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
571

Chapter 14

572
MaxDirectedDistance

Example (cont.) CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.MinDirectedDistance();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax MaxDirectedDistance(
);

Include File C_RoiGauge.h

Description Computes the maximum directed distance
between either a point ROI and a freehand
ROI or between two freehand ROIs. For more
information, refer to the DirectedDistance
method.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14

MinOppositeDistance

Example (cont.) // Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.MaxDirectedDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax MinOppositeDistance(
);

Include File C_RoiGauge.h

Description Computes the minimum opposite distance
between two points, each on a different
freehand ROI, or between a point ROI and a
point on a freehand ROI. To do this, the
algorithm creates a series of lines that are
parallel to the specified angle and that cross
both ROIs. The algorithm measures the
distance between the intersection points on
each line and then returns the minimum
distance.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.
573

Chapter 14

574
MaxOppositeDistance

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.MinOppositeDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax MaxOppositeDistance(
);

Include File C_RoiGauge.h

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Description Computes the maximum opposite distance
between two points, each on a different
freehand ROI, or between a point ROI and a
point on a freehand ROI. To do this, the
algorithm creates a series of lines that are
parallel to the specified angle and that cross
both ROIs. The algorithm measures the
distance between the intersection points on
each line and then returns the maximum
distance.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
575

Chapter 14

576
MinPerpendicularDistance

Example (cont.) CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.MaxOppositeDistance();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax MinPerpendicularDistance(
);

Include File C_RoiGauge.h

Description Computes the minimum perpendicular
distance between a line ROI and an ellipse
ROI or between a line ROI and a freehand
ROI. To do this, the algorithm creates a series
of lines that are perpendicular to the line ROI
and that cross the ellipse or freehand ROI. The
algorithm measures the distance between the
intersection points on each line and then
returns the minimum distance.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
MaxPerpendicularDistance

Example (cont.) CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.MinPerpendicularDistance

();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax MaxPerpendicularDistance(
);

Include File C_RoiGauge.h
577

Chapter 14

578
Description Computes the maximum perpendicular
distance between a line ROI and an ellipse
ROI or between a line ROI and a freehand
ROI. To do this, the algorithm creates a series
of lines that are perpendicular to the line ROI
and that cross the ellipse or freehand ROI. The
algorithm measures the distance between the
intersection points on each line and then
returns the maximum distance.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Roundness

Example (cont.) // Invoke the gauging method
CRoiGauge.MaxPerpendicularDistance

();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax Roundness(
);

Include File C_RoiGauge.h

Description Computes the degree of roundness of a
rectangle, ellipse, poly freehand, or freehand
ROI. The result of the measurement operation
is less than or equal to 1, where a value of 1
indicates that the ROI is perfectly circular. The
tool uses the following formula:

Roundness = (4*Pi*Area)/(Perimeter^2)

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
579

Chapter 14

580
GrayAverage

Example (cont.) //Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.Roundness();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax GrayAverage(
);

Include File C_RoiGauge.h

Description Computes the average grayscale value of all
pixels underneath a line, poly line, or
freehand line ROI or within a rectangle,
ellipse, poly freehand, or freehand ROI. Point
ROIs are not supported. This method works
with any type of image.

Parameters None

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1,

*CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2,

*CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.GrayAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();
581

Chapter 14

582
RedAverage

Syntax RedAverage(
);

Include File C_RoiGauge.h

Description Computes the average red value of all pixels
underneath a line, poly line, or freehand line
ROI or within a rectangle, ellipse, poly
freehand, or freehand ROI. Point ROIs are not
supported. This method works with RGB
images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
GreenAverage

Example (cont.) CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.RedAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax GreenAverage(
);

Include File C_RoiGauge.h

Description Computes the average green value of all
pixels underneath a line, poly line, or
freehand line ROI or within a rectangle,
ellipse, poly freehand, or freehand ROI. Point
ROIs are not supported. This method works
with RGB images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
583

Chapter 14

584
BlueAverage

Example (cont.) //Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.GreenAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax BlueAverage(
);

Include File C_RoiGauge.h

Description Computes the average blue value of all pixels
underneath a line, poly line, or freehand line
ROI or within a rectangle, ellipse, poly
freehand, or freehand ROI. Point ROIs are not
supported. This method works with RGB
images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement

//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the gauging method
CRoiGauge.BlueAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();
585

Chapter 14

586
HueAverage

Syntax HueAverage(
);

Include File C_RoiGauge.h

Description Computes the average hue value of all pixels
underneath a line, poly line, or freehand line
ROI or within a rectangle, ellipse, poly
freehand, or freehand ROI. Point ROIs are not
supported. This method works with HSL
images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
SatAverage

Example (cont.) CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the measurement method
CRoiGauge.HueAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax SatAverage(
);

Include File C_RoiGauge.h

Description Computes the average saturation value of all
pixels underneath a line, poly line, or
freehand line ROI or within a rectangle,
ellipse, poly freehand, or freehand ROI. Point
ROIs are not supported. This method works
with HSL images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
587

Chapter 14

588
LumAverage

Example (cont.) //Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the measurement method
CRoiGauge.SatAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax LumAverage(
);

Include File C_RoiGauge.h

Description Computes the average luminance value of all
pixels underneath a line, poly line, or
freehand line ROI or within a rectangle,
ellipse, poly freehand, or freehand ROI. Point
ROIs are not supported. This method works
with HSL images.

Parameters None

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .

// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

// Invoke the measurement method
CRoiGauge.LumAverage();

// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();
589

Chapter 14

590
GrayValue

Syntax GrayValue(
);

Include File C_RoiGauge.h

Description Returns the gray value of the pixel
underneath a point ROI. This method works
with any type of image.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
RedValue

Example (cont.) // Invoke the gauging method
CRoiGauge.GrayValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax RedValue(
);

Include File C_RoiGauge.h

Description Returns the red value of the pixel underneath
a point ROI. This method works with RGB
images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
591

Chapter 14

592
GreenValue

Example (cont.) CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.RedValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax GreenValue(
);

Include File C_RoiGauge.h

Description Returns the green value of the pixel
underneath a point ROI. This method works
with RGB images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
BlueValue

Example (cont.) //Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.GreenValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax BlueValue(
);

Include File C_RoiGauge.h

Description Returns the blue value of the pixel underneath
a point ROI. This method works with RGB
images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
593

Chapter 14

594
HueValue

Example (cont.) CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.BlueValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax HueValue(
);

Include File C_RoiGauge.h

Description Returns the hue value of the pixel underneath
a point ROI. This method works with HSL
images.

Parameters None

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
SatValue

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.HueValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax SatValue(
);

Include File C_RoiGauge.h
595

Chapter 14

596
Description Returns the saturation value of the pixel
underneath a point ROI. This method works
with HSL images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.SatValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
LumValue

Syntax LumValue(
);

Include File C_RoiGauge.h

Description Returns the luminance value of the pixel
underneath a point ROI. This method works
with HSL images.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
//CRoi1 must be a point ROI
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
597

Chapter 14

598
XIntersection

Example (cont.) // Invoke the gauging method
CRoiGauge.LumValue();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax XIntersection(
);

Include File C_RoiGauge.h

Description Returns the X-coordinate of the intersection
point between two line ROIs. This
measurement is done at the subpixel level.
This method works with any type of image.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14

YIntersection

Example (cont.) CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
//Should be a line ROI
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.XIntersection();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax YIntersection(
);

Include File C_RoiGauge.h

Description Returns the Y coordinate of the intersection
point between two line ROIs. This
measurement is done at the subpixel level.
This method works with any type of image.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
599

Chapter 14

600
GetResults

Example (cont.) stMResult *pResult;
//will hold result of a
//measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
//Should be a line ROI
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.YIntersection();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax StMResult * GetResults(
);

Include File C_RoiGauge.h

Description Returns a pointer to the results structure. It
can be invoked after executing one of the
gauging methods.

Parameters None

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Return Values

A pointer to the stMResult
structure containing the

measurement result.

Successful.

The fresult member of the
stMResult structure will

contain −1.

Unsuccessful.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
CcList *TheList;
CcGaugingMethod *CMeasurement;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Get the list of measurement
//methods
TheList = CRoiGauge.GetMethodList

();
601

Chapter 14

602
GetMethodList

Example (cont.) // Get the measurement object from
// the list, based on the name
CMeasurement=(CcGaugingMethod *)

 TheList->GetViaName(“Min
Distance”);

if (CMeasurement == NULL)
{
Error("Can't get the measurement

 method!");
 return;
}
// Invoke the gauging method
(CRoiGauge.*CMeasurement->

 GaugingMethod)();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax CcList * GetMethodList(
);

Include File C_RoiGauge.h

Description Returns a pointer to the list of gauging
method pointers. This list provides a way to
associate text names of the gauging methods
with pointers to these methods so that you can
invoke the gauging methods based on their
text names. The text names are defined at the
top of the C_RoiGauge.h header file.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1, *CImageIn2;
CcImage *CImageIn3;
CcRoiBase *CRoi1, *CRoi2, *CRoi3;
BOOL bStatus;
CcRoiGauge CRoiGauge;
CcList *TheList;
CcGaugingMethod *CMeasurement;
stMResult *pResult;
//Holds result of a measurement
//Fill the images and ROIs with
//data
. . . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetImage2(CImageIn2);
CRoiGauge.SetImage3(CImageIn3);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetRoi2(CRoi2);
CRoiGauge.SetRoi3(CRoi3);
CRoiGauge.SetAngle(Angle);
// Get the list of measurement
// methods
TheList = CRoiGauge.GetMethodList(

);
// Get the measurement object from
// the list, based on the name
CMeasurement=(CcGaugingMethod *)
 TheList->GetViaName(“Min

Distance”);
603

Chapter 14

604
HeightBoundingRect

Example (cont.) if (CMeasurement == NULL)
{
 Error("Can't get the

measurement method!");
 return;
}
// Invoke the measurement method
(CRoiGauge.*CMeasurement->

 GaugingMethod)();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax HeightBoundingRect(
);

Include File C_RoiGauge.h

Description For a freehand ROI or poly freehand ROI,
returns the height of the minimum bounding
box by area.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1;
CcRoiBase *CRoi1;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//will hold result of a
//measurement

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14

WidthBoundingRect

Example (cont.) //Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.HeightBoundingRect();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax WidthBoundingRect(
);

Include File C_RoiGauge.h

Description For a freehand ROI or poly freehand ROI,
returns the width of the minimum bounding
box by area.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1;
CcRoiBase *CRoi1;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;
//will hold result of a
//measurement
605

Chapter 14

606
AngleBoundingRect

Example (cont.) //Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.WidthBoundingRect();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();

Syntax AngleBoundingRect(
);

Include File C_RoiGauge.h

Description For a freehand ROI or poly freehand ROI,
returns the angle of the minimum bounding
box by area.

Parameters None

Return Values Values are returned by the GetResults
method, described on page 600.

Example The following is a sample code fragment:

float Angle;
CcImage *CImageIn1;
CcRoiBase *CRoi1;
BOOL bStatus;
CcRoiGauge CRoiGauge;
stMResult *pResult;

Using the Gauge Tool API

1

14

1

1

1

1

1

1

14
Example (cont.) //will hold result of a
//measurement
//Fill the images and ROIs with
//data
. . .
// Set all the necessary inputs to
// the CRoiGauge class
CRoiGauge.SetImage1(CImageIn1);
CRoiGauge.SetRoi1(CRoi1);
CRoiGauge.SetAngle(Angle);
// Invoke the gauging method
CRoiGauge.AngleBoundingRect();
// Retrieve pointer to the result
pResult = CRoiGauge.GetResults();
607

Chapter 14

608

15
Using the Histogram Tool API

Overview of the Histogram Tool API . 610

CcHistogram Methods. 611

Example Program Using the Histogram Tool API 615
609

Chapter 15

610
Overview of the Histogram Tool API
The API for the Histogram tool has one object only: the CcHistogram
class. This tool creates a histogram from an input image (derived
from class CcImage) with respect to a given ROI (derived from class
CcRoiBase). The CcHistogram class is derived from the CcCurve DT
Vision Foundry class. You can use the methods of the CcCurve class
to access the histogram data. For further information on these objects,
refer to the example program at the end of this chapter.

The CcHistogram class uses a standard constructor and destructor
and the class methods listed in Table 32.

Table 32: CcHistogram Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcHistogram();

~CcHistogram();

CcHistogram
Class Methods

int MakeHistogram(CcImage* CImage,CcRoiBase* CRoi);

int Normalize(void);

STHISTSTATS* GetStats(float fStart=-1,float fStop=-1);

Using the Histogram Tool API

1

15

15

1

1

1

1

1

1

CcHistogram Methods
This section describes each method of the CcHistogram class in
detail.

MakeHistogram

Syntax int MakeHistogram(
 CcImage* CImage,
 CcRoiBase* CRoi);

Include File C_Hist.h

Description Creates a histogram of the image with respect
to the given ROI.

Parameters

Name:

Description:

CImage

Image derived from the CcImage class and
used as the input image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Notes This method uses images derived from the DT
Vision Foundry-supplied CcImage class.
These include 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, and 24-bit color
images. This method uses an ROI derived
from the DT Vision Foundry-supplied
CcRoiBase class. These include the rectangle,
line, elliptical, and freehand ROIs. It also
works with your own images or ROIs derived
from these classes.
611

Chapter 15

612
Normalize

Notes (cont.) The CcHistogram class is derived from the
CcCurve class. After making a histogram, you
can add it to the list of curves of a graph class
and then easily display the graph containing
the histogram in any window.

To access the histogram data, call the methods
of the CcCurve class. For more information,
refer to the example program at the end of this
chapter.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int Normalize(void);

Include File C_Hist.h

Description Normalizes the histogram created using the
method MakeHistogram().

Notes This method normalizes the histogram owned
by this class. To normalize a histogram, each
point in the histogram is divided by the total
number of pixels that comprise the histogram.
This value is then multiplied by 100. The total
number of pixels in the histogram is the
number of pixels enclosed by the ROI with
which the histogram was created.

Using the Histogram Tool API

1

15

15

1

1

1

1

1

1

GetStats

Return Values

−1 Unsuccessful.

0 Successful.

Syntax STHISTSTATS* GetStats(
 float fStart = -1,
 float fStop = -1);

Include File C_Hist.h

Description Returns the statistics for the histogram.

Parameters

Name:

Description:

fStart

The starting position to use when calculating
the statistics.

Name:

Description:

fStop

The ending position to use when calculating
the statistics.

Notes You must first create the histogram by calling
MakeHistogram() before calling this method.
If you want the statistics for the entire
histogram, you can call this method with no
parameters. The fStart and fStop parameters
correspond to the stat bars, described earlier
in the chapter.

The returned histogram statistics structure is
defined as follows:
struct stHistStatsTag {
float fMin;
613

Chapter 15

614
Notes (cont.) //Lowest value in histogram with
//nonzero value
float fMax;
//Highest value in histogram with
//nonzero value
float fMean;
//Average value in histogram
float fStdDev;
//Standard Deviation of histogram
float fTotalPixels;
//Total number of pixels in
//histogram
float fSelPixels;
//Selected number of pixels in
//histogram
float fPercentSel;
//Percent of pixels in histogram
//that are selected
};
typedef struct stHistStatsTag

STHISTSTATS;

Return Values

NULL Unsuccessful.

A pointer to a histogram
statistics structure.

Successful.

Using the Histogram Tool API

1

15

15

1

1

1

1

1

1

Example Program Using the Histogram
Tool API

This example program compares the same region in two 8-bit images,
looking for which area is brighter above a threshold value of 50.

Note: This example is made from code fragments with error
checking removed. In an actual program, you should check return
values and pointers.

int SomeFunction(void)
{
CcHistogram* cHist;
//Object to perform histogram
CcGrayImage256* CImageIn1;
//8-bit grayscale input image1
CcGrayImage256* CImageIn2;
//8-bit grayscale input image2
CcRoiRect* Roi;
//Rectangular ROI
RECT stROI;

STPOINTS* stPoints;
//Pointer to histogram data
int x;
//Temp variable
float fBrightValue1;
//Brightness values
float fBrightValue2;

//Create objects
CHist = new CcHistogram();
CImageIn1 = new CcGrayImage256();
CImageIn2 = new CcGrayImage256();
615

Chapter 15

616
CRoi = new CcRoiRect();
//Open input images from disk
CImageIn1->OpenBMPFile(“image1.bmp”);
CImageIn2->OpenBMPFile(“image2.bmp”);

//Create rectangular ROI
stROI.bottom = 50; stROI.top = 150;
stROI.left = 50; stROI.right = 150;
CRoi->SetRoiImageCord((VOID*)&stROI);

//Create histogram of input image 1
CHist->MakeHistogram(CImageIn1,CRoi);

//Calculate brightness value for image 1
//Get pointer to histogram data
stPoints = CHist->GetCurveData();
//Calculate value
fBrightValue1 = 0;
for(x=0; x<CHist->GetNumberOfPoints(); x++)
{
if(stPoints[x].fX > 50)
fBrightValue1 += stPoints[x].fY;
}

//Create histogram of input image 2
CHist->MakeHistogram(CImageIn2,CRoi);

//Calculate brightness value for image 2
//Get pointer to histogram data
stPoints = CHist->GetCurveData();
//Calculate value
fBrightValue2 = 0;
for(x=0; x<CHist->GetNumberOfPoints(); x++)
{
if(stPoints[x].fX > 50)
fBrightValue2 += stPoints[x].fY;
}

Using the Histogram Tool API

1

15

15

1

1

1

1

1

1

//Free memory
delete CHist;
delete CImageIn1;
delete CImageIn2;
delete Croi;

//Tell user which is brighter
if(fBrightValue2 > fBrightValue1)
 MessageBox(0,”Image 2”,”Answer”,MB_OK);
else if(fBrightValue2 < fBrightValue1)
 MessageBox(0,”Image 1”,”Answer”,MB_OK);
else
 MessageBox(0,”Equal”,”Answer”,MB_OK);

return(0);
}

617

Chapter 15

618

16
Using the Image Classifier

Tool API
Overview of the Image Classifier Tool API 620

CcImgCL Methods . 623
619

Chapter 16

620
Overview of the Image Classifier Tool API
The Image Classifier tool is a C++ class that is designed to work
within the DT Vision Foundry environment. It is a general-purpose
classifier for grayscale images.

The Image Classifier tool compares images against a catalog of
images that you built previously.

Images must meet the following requirements for use with the Image
Classifier tool:

• The size of the input images must be exactly the same size in the
classification session, and

• The catalog images, mask images, and the images under test
must contain exactly the same dimensions.

Note: This tool is light sensitive; therefore, it is recommended that
you use appropriate lighting while using this tool.

The API for the Contour Classifier tool has one object only: the
CcImgCL class. The CcImgCL class uses a standard constructor and
destructor and the class methods listed in Table 33.

Table 33: CcImgCL Class Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcImgCL();

~CcImgCL();

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

CcImgCL Class
Methods

int Classify(CcImage *pImageIn, CcRoiBase *pcRoi);

STIMGCLRESULT *GetResult(void);

RECT *GetRoiIn(void);

int LoadCatalog(char *cFname);

int SaveCatalog (char *cFname);

bool *SetRoiIn(RECT *stInRoiRect);

void SetLightDesens(bool bLight);

bool SetExtendedClassificationDepth(float fDepth);

void SetScoreCalculation(bool bScore);

int CountNumHypos(int iHypoType, double dAngleStart,
double dAngleStep, double dAngleEnd, int iShiftInX, int
iShiftInY);

bool InitializeTrainingProcedure(int iNumHypos);

void SetInputImageWidth(int iWidth);

void SetInputImageHeight(int iHeight);

bool SetBackgroundImage(CcImage *pImage);

bool SetInputImage(CcImage *pImage);

bool SetInputMask(CcImage *pImage);

bool SetImageName(char *cImageName);

bool SetHypothesisType(int iHypoType);

bool SetShiftInX(int iShiftInx);

bool SetShiftInY(int iShiftInY);

bool SetAngleStart(double dAngleStart);

bool SetAngleStep(double dAngleStep);

Table 33: CcImgCL Class Methods (cont.)

Method Type Method Name
621

Chapter 16

622
CcImgCL Class
Methods (cont.)

bool SetAngleEnd(double dAngleEnd);

void AddImage(void);

bool BuildCatalog(void);

void UseNormalizedMetric(bool);

Table 33: CcImgCL Class Methods (cont.)

Method Type Method Name

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

CcImgCL Methods
This section describes each method of the CcImgCL class in detail.

Classify

Syntax int Classify(CcImage *pImageIn,
CcRoiBase *pCRoi);

Include File C_ImgCL.h

Description Classifies an image under test by comparing it
to the images in the catalog.

Parameters

Name:

Description:

pImageIn

A pointer to an input image.

Name:

Description:

pCRoi

A pointer to a region of interest inside the
input image.

Notes The Image Classifier tool works on the pixels
contained within the ROI specified by pCRoi.

Return Values

−1 Classification failed.

0 Classification was successful.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcImage *InImage;
CcRoiBase *InRoi;
//Classify the target
m_CImgCL.Classify(InImage, InRoi);
623

Chapter 16

624
GetResult

Syntax STIMGCLRESULT *GetResult(void);

Include File C_ImgCL.h

Description Returns the results of the classification.

Parameters None

Notes Call this method after calling Classify.

Return Values The pointer to the STIMGCLRESULT structure,
which is defined as follows:

struct stResultTag
{
 //Name of the matching element
 CString CMatch;
 //Match confidence measure
 double dScore;
 //Angle of rotation
 float fAngle;
 //Shift in X (in pixels)
 int iShiftInX;
 //Shift in Y (in pixels)
 int iShiftInY;
};
typedef stResultTag STIMGCLRESULT;

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcImage *InImage;
CcRoiBase *InRoi;
STIMGCLRESULT *pstResult;
//Classify the target
m_CImgCL.Classify(InImage, InRoi);
pstResult = m_CImgCL.GetResult();

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

GetRoiIn

LoadCatalog

Syntax RECT *GetRoiIn(void);

Include File C_ImgCL.h

Description Returns a pointer to a RECT structure that
describes an ROI, which is used to build the
catalog.

Parameters None

Notes Use this method after calling SetRoiIn or
LoadCatalog.

Return Values A pointer to the RECT structure.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcRoiBase *InRoi;
//Get the ROI
InRoi = m_CImgCL.GetRoiIn();

Syntax int LoadCatalog(char *cFname);

Include File C_ImgCL.h

Description Restores the image catalog.

Parameters

Name:

Description:

cFname

The name of the file from which to load the
image catalog.

Notes None
625

Chapter 16

626
SaveCatalog

Return Values

−1 Operation failed.

0 Catalog was successfully loaded.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

pstResult = m_CImgCL.LoadCatalog
(“catalog.cat”)

Syntax int SaveCatalog(char *cFname);

Include File C_ImgCL.h

Description Saves the image catalog.

Parameters

Name:

Description:

cFname

The name of the file into which to save the
image catalog.

Notes None

Return Values

−1 Operation failed.

0 Catalog was successfully saved.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetRoiIn

Example (cont.) pstResult = m_CImgCL.SaveCatalog
(“catalog.cat”)

Syntax RECT *SetRoiIn(RECT *stInRoiRect);

Include File C_ImgCL.h

Description Saves a RECT structure that describes an ROI,
which is used to build the catalog.

Parameters

Name:

Description:

stInRoiRect

A pointer to a RECT structure that describes
the input ROI.

Notes None

Return Values

True Operation succeeded.

False Operation failed. An invalid RECT structure
was supplied.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcRoiBase *InRoi;

//Set the ROI
InRoi = m_CImgCL.SetRoiIn();
627

Chapter 16

628
SetLightDesens

Syntax void SetLightDesens(bool bLight);

Include File C_ImgCL.h

Description Specifies that the tool will be less sensitive to
changes in lighting conditions.

Parameters

Name:

Description:

bLight

If TRUE, the tool will be less sensitive to
changes in lighting conditions. If FALSE, the
tool will not be less sensitive to changes in
lighting conditions.

Notes It is recommended that you specify bLight as
TRUE in an environment where you can
accurately control the light intensity.
Otherwise, you may get inaccurate results.

You may need to experiment with this option.

Return Values None

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Turn the option on
InRoi = m_CImgCL.SetLightDesens(

TRUE);

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetExtendedClassificationDepth

Syntax bool SetExtendedClassification
Depth(float fDepth);

Include File C_ImgCL.h

Description Specifies the classification depth.

Parameters

Name:

Description:

fDepth

A value from 0 to 1. A value of 0 means that
no additional processing will be performed.

Notes A higher value for fDepth increases the
accuracy of the tool since more processing is
done. This is most suitable when you need to
distinguish between very similar images.

Return Values

TRUE Operation was successful.

FALSE Invalid input value.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Specify a classification depth
InRoi=m_CImgCL.SetExtended

ClassificationDepth(0.10);
629

Chapter 16

630
SetScoreCalculation

CountNumHypos

Syntax void SetScoreCalculation(bool
bScore);

Include File C_ImgCL.h

Description Enables/disables score calculations.

Parameters

Name:

Description:

bScore

A value of TRUE enables score calculations; a
value of FALSE disables score calculations.

Notes Calculating the score extends the processing
time.

Return Values None

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Turn the option on
InRoi=m_CImgCL.

SetScoreCalculation(TRUE);

Syntax int CountNumHypos(int iHypoType,
double dAngleStart,
double dAngleStep,
double dAngleEnd,
int iShiftInX, int iShiftInY);

Include File C_ImgCL.h

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

Description Computes the hypotheses number that is used
by the InitializeTrainingProcedure method.

Parameters

Name:

Description:

iHypoType

Hypothesis selection for this image. The
hypothesis selections are defined in the
eHypoType enumeration, which is defined as
follows:

typedef enum eHypoType
{
 //Each image is classified; only
 //the best matching image name
 //is returned
 HYPOTHESIS_PER_IMAGE,

 //Classification result for
 //every rotation of the image is
 //returned with the image name
 HYPOTHESIS_PER_ROT,

 //Classification result for
 //every shift of the image is
 //returned with the image name
 HYPOTHESIS_PER_SHIFT,

//Only the image name is
 //returned regardless of the
 //rotation or shift of the image
 HYPOTHESIS_FORALL_ROTS_AND_

FORALL_SHIFTS,
631

Chapter 16

632
Description (cont): //Only the image name is
 //returned regardless of the
 //image rotations
 HYPOTHESIS_FORALL_ROTS,

 //Only the image name is
 //returned regardless of any
 //image shifts
 HYPOTHESIS_FORALL_SHIFTS,

 //Classification result for
 //every image rotation,
 //regardless of any shifts,
 //is returned
 HYPOTHESIS_PER_ROT_IND_SHIFTS,

 //Classification result for
 //every combination of rotations
 //is returned with the image
 //name
 HYPOTHESIS_PER_ROT_AND_PER_

SHIFTS,

 //Classification result for
 //every shift of the image,
 //regardless of any rotations,
 //is returned with the
 //image name
HYPOTHESIS_PER_SHIFT_IND_ROTS,

//Classification result for
//every combination of shifts is
//returned with the image name
BACKGROUND_IMAGE,
//Invalid entry
HYPOTHESIS_INVALID
};

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

Name:

Description:

dAngleStart

The starting angle for generating rotated
images in the training process of the tool.

Name:

Description:

dAngleStep

The amount of rotation to use between each
angle for generating rotated images in the
training process of the tool.

Name:

Description:

dAngleEnd

The ending angle for generating rotated
images in the training process of the tool.

Name:

Description:

iShiftInX

The shift in the X-direction for generating
images in the training process of the tool.

Name:

Description:

iShiftInY

The shift in the Y-direction for generating
images in the training process of the tool.

Notes Invoke this method for each input image that
you supply to the tool. Supply the summed
results of this method to the
InitializeTrainingProcedure method to
ensure that the training catalog is complete.

Return Values The number of hypotheses is calculated based
on the supplied inputs.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Turn the option on
633

Chapter 16

634
InitializeTrainingProcedure

Example (cont.) int iHypos=m_CImgCL.CountNumHypos(
HYPOTHESIS_PER_IMAGE), 0.0,
1.0, 20.0, 4, 4);

Syntax bool InitializeTrainingProcedure(
int iNumHypos);

Include File C_ImgCL.h

Description Initializes the training procedure prior to
training the Image Classifier tool.

Parameters

Name:

Description:

iNumHypos

The number calculated using the
CountNumHypos method.

Notes You must invoke the CountNumHypos
method for each input image that is supplied
to the tool and sum the results prior to calling
this method.

You must invoke this method before training
the Image Classifier tool. You must destroy
then construct the Image Classifier object each
time a new training session is started.

Return Values

TRUE Operation was successful.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetInputImageWidth

Example (cont.) int iNumHypos;

//Initialize the class before
//you begin the training
InRoi=m_CImgCL.

InitializeTrainingProcedure(
iNumHypos);

Syntax void SetInputImageWidth(
int iWidth);

Include File C_ImgCL.h

Description Sets the image width that is used globally by
the tool.

Parameters

Name:

Description:

iWidth

The width of the input image in pixels.

Notes You should invoke this method after calling
the InitializeTrainingProcedure method.

Return Values None

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Set the width of the input image
m_CImgCL.SetInputImageWidth(36);
635

Chapter 16

636
SetInputImageHeight

SetBackgroundImage

Syntax void SetInputImageHeight(
int iHeight);

Include File C_ImgCL.h

Description Sets the image height that is used globally by
the tool.

Parameters

Name:

Description:

iHeight

The height of the input image in pixels.

Notes You should invoke this method after calling
the InitializeTrainingProcedure method.

Return Values None

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Set the height of the
//input image
m_CImgCL.SetInputImageHeight(36);

Syntax bool SetBackgroundImage(
CcImage *pImage);

Include File C_ImgCL.h

Description Sets the background image that is required by
the tool to generate an intermediate image.

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetInputImage

Parameters

Name:

Description:

pImage

A pointer to a valid background image.

Notes You should invoke this method after calling
the SetInputImageWidth and
SetInputImageHeight methods.

Return Values

TRUE Image was valid and was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcImage *pImage;

//Set the background image
bool bRetVal= m_CImgCL.

SetBackgroundImage(pImage);

Syntax bool SetInputImage(
CcImage *pImage);

Include File C_ImgCL.h

Description Specifies the input image to add to the
catalog.

Parameters

Name:

Description:

pImage

A pointer to a valid input image.
637

Chapter 16

638
SetInputMask

Notes You should invoke this method once for each
supplied input image.

Return Values

TRUE Image was valid and was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcImage *pImage;

//Set the input image
bool bRetVal= m_CImgCL.

SetInputImage(pImage);

Syntax bool SetInputMask(
CcImage *pImage);

Include File C_ImgCL.h

Description Specifies the input mask that the tool uses to
generate additional input images.

Parameters

Name:

Description:

pImage

A pointer to a valid input image.

Notes In general, you should invoke this method
once for each supplied input image, although
some images may not require a mask.

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetImageName

Return Values

TRUE Image was valid and was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
CcImage *pImage;

//Set the input image
bool bRetVal= m_CImgCL.

SetInputMask(pImage);

Syntax bool SetImageName(
char *cImageName);

Include File C_ImgCL.h

Description Specifies the name of the image that is entered
using the SetInputImage method.

Parameters

Name:

Description:

pImageName

A pointer to a valid input image name string.

Notes After the image is classified, this name is
assigned to the “Match” portion of the results
structure.

Return Values

TRUE String was assigned.

FALSE Operation failed.
639

Chapter 16

640
SetHypothesisType

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
char cName[200];

strcpy(cName, “whatever”);

//Set the image name
bool bRetVal= m_CImgCL.

SetInputMask(cName);

Syntax bool SetHypothesisType(
int iHypoType);

Include File C_ImgCL.h

Description Specifies the hypothesis selection for a
particular training image.

Parameters

Name:

Description:

iHypoType

Hypothesis selection for this image. The
hypothesis selections are defined in the
eHypoType enumeration, which is defined as
follows:

typedef enum eHypoType
{
 //Each image is classified; only
 //the best matching image name
 //is returned
 HYPOTHESIS_PER_IMAGE,

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

Description (cont): //Classification result for
 //every rotation of the image is
 //returned with the image name
 HYPOTHESIS_PER_ROT,

//Classification result for
 //every shift of the image is
 //returned with the image name
 HYPOTHESIS_PER_SHIFT,

//Only the image name is
 //returned regardless of the
 //rotation or shift of the image
 HYPOTHESIS_FORALL_ROTS_AND_

FORALL_SHIFTS,

//Only the image name is
 //returned regardless of the
 //image rotations
 HYPOTHESIS_FORALL_ROTS,

 //Only the image name is
 //returned regardless of any
 //image shifts
 HYPOTHESIS_FORALL_SHIFTS,

 //Classification result for
 //every image rotation,
 //regardless of any shifts,
 //is returned
 HYPOTHESIS_PER_ROT_IND_SHIFTS,
641

Chapter 16

642
Description (cont): //Classification result for
 //every combination of rotations
 //is returned with the image
 //name
 HYPOTHESIS_PER_ROT_AND_PER_

SHIFTS,

 //Classification result for
 //every shift of the image,
 //regardless of any rotations,
 //is returned with the
 //image name
 HYPOTHESIS_PER_SHIFT_IND_ROTS,

//Classification result for
 //every combination of shifts is
 //returned with the image name
 BACKGROUND_IMAGE,
 //Invalid entry
 HYPOTHESIS_INVALID
};

Notes None

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Assign a hypothesis for every
//image

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetShiftInX

Example (cont.) bool bRetVal= m_CImgCL.
SetHypothesisType(
HYPOTHESIS_PER_IMAGE);

Syntax bool SetShiftInX(
int iShiftInX);

Include File C_ImgCL.h

Description Specifies the shift in the X-direction of the
input image that is required to generate the
intermediate training images.

Parameters

Name:

Description:

iShiftInX

The number of pixels by which the input
image is shifted in the X-direction.

Notes The Image Classifier automatically generates
images with the specified shift range for the
purpose of training the input images.

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Allow up to 4 pixel shifts +/-
bool bRetVal=m_CImgCL.SetShiftInX(

4);
643

Chapter 16

644
SetShiftInY

Syntax bool SetShiftInY(
int iShiftInY);

Include File C_ImgCL.h

Description Specifies the shift in the Y-direction of the
input image that is required to generate the
intermediate training images.

Parameters

Name:

Description:

iShiftInY

The number of pixels by which the input
image is shifted in the Y-direction.

Notes The Image Classifier automatically generates
images with the specified shift range for the
purpose of training the input images.

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Allow up to 4 pixel shifts +/-
bool bRetVal=m_CImgCL.SetShiftInY(

4);

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetAngleStart

Syntax bool SetAngleStart(
double dAngleStart);

Include File C_ImgCL.h

Description Specifies the starting angle for the generated
rotated images in the training process of the
tool.

Parameters

Name:

Description:

dAngleStart

The starting angle for generating rotated
images, in degrees.

Notes The Image Classifier automatically generates
images with the specified rotation for the
purpose of training the input images.

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Start at 0 degrees
bool bRetVal=m_CImgCL.

SetAngleStart(0.0);
645

Chapter 16

646
SetAngleStep

Syntax bool SetAngleStep(
double dAngleStep);

Include File C_ImgCL.h

Description Specifies the amount of rotation to use
between each angle for generating rotated
images in the training process of the tool.

This value must be less than dAngleStart
minus dAngleEnd.

Parameters

Name:

Description:

dAngleStep

The amount of rotation to use between each
angle, in degrees. Specifies the amount of
rotation to use between each angle for
generating rotated images in the training
process of the tool. This value must be less
than dAngleStart minus dAngleEnd.

Notes The Image Classifier automatically generates
images with the specified rotation for the
purpose of training the input images.

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;
//One degree step
bool bRetVal=m_CImgCL.

SetAngleStep(1.0);

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

SetAngleEnd

Syntax bool SetAngleEnd(
double dAngleEnd);

Include File C_ImgCL.h

Description Specifies the ending angle for the generated
rotated images in the training process of the
tool.

Parameters

Name:

Description:

dAngleEnd

The ending angle for generating rotated
images, in degrees.

Notes The Image Classifier automatically generates
images with the specified rotation for the
purpose of training the input images.

Return Values

TRUE Valid integer was assigned.

FALSE Operation failed.

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//End at 60 degrees
bool bRetVal=m_CImgCL.

SetAngleEnd(60.0);
647

Chapter 16

648
AddImage

BuildCatalog

Syntax void AddImage(void);

Include File C_ImgCL.h

Description Adds the image to the catalog.

Parameters None

Notes None

Return Values None

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Assign the image
m_CImgCL.AddImage();

Syntax bool BuildCatlog(void);

Include File C_ImgCL.h

Description Creates the catalog of images with which to
compare images under test.

Parameters None

Notes None

Return Values

TRUE Catalog was built successfully.

FALSE Operation failed.

Using the Image Classifier Tool API

1

1

16

16

1

1

1

1

1

UseNormalizedMetric

Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Create the catalog
bool bRetVal=m_CImgCL.

BuildCatalog();

Syntax void UseNormalizedMetric(bool);

Include File C_ImgCL.h

Description Specifies how you want to represent the score
that is assigned to a match.

Parameters

TRUE The score can range from 0.0 to 1.0, where 0.0
is the worst possible match and 1.0 is the best
possible match.

FALSE The score can range from 0.0 to negative
infinity, where 0.0 is the best possible match
and the lower the negative value, the worse
the match.

Notes None

Return Values None
649

Chapter 16

650
Example The following is a sample code fragment:

//Instantiate the image classifier
//class
CcImgCL m_CImgCL;

//Specify a score of 0.0 to 1.0
m_CImgCL.UseNormalizedMetrics(

TRUE);

17
Using the Image Modifier

Tool API
Overview of the Image Modifier Tool API 652

CcImgMod Methods . 653
651

Chapter 17

652
Overview of the Image Modifier Tool API
The API for the Image Modifier tool has one object only: the
CcImgMod class. This tool provides crop, flip/rotate, and scale
operations to manipulate images.

The CcImgMod class uses a standard constructor and destructor and
the class methods listed in Table 34.

Table 34: CcImgMod Object Methods

Method Type Method Name

Constructor &
Destructor Method

CcImgMod();

~CcImgMod();

CcImgMod Class
Methods

int Crop(CcImage* CImageIn, CcImage* cImageOut,
CcRoiBase* CRoi, int iFillValue, bool bKeepOrigSize);

int FlipRotate(CcImage* CImageIn, CcImage* CImageOut,
int iOperation, int iRotateAmount);

int Scale(CcImage* CImageIn, CcImage* CImageOut, int
iScaleFactor, int iFillValue);

Using the Image Modifier Tool API

1

1

1

17

17

1

1

1

1

CcImgMod Methods
This section describes each method of the CcImgMod class in detail.

Crop

Syntax int Crop(CcImage* CImageIn,
CcImage* CImageOut,
CcRoiBase* CRoi,
int iFillValue,
Bool bKeepOrigSize);

Include File C_ImgMod.h

Description Crops an image.

Parameters

Name:

Description:

CImageIn

Image that is derived from class CcImage and
used as the input image.

Name:

Description:

CImageOut

Image that is derived from class CcImage and
used as the output image.

Name:

Description:

CRoi

The ROI in which to perform the crop
operation. This can be a rectangle, ellipse,
poly freehand, or freehand ROI.

Name:

Description:

iFillValue

Specifies the background color of the image.
Value range from 0 (black) to 255 (white).
653

Chapter 17

654
Name:

Description:

bKeepOrigSize

If TRUE, the output image is the same size as
the input image. The area inside the ROI is
cropped and the rest of the image is the color
specified by iFillValue.

If FALSE, the output image is the size of the
smallest rectangle that surrounds the entire
ROI. Any area in the output image that is not
inside the ROI is set to the color specified by
iFillValue.

Notes Rectangle and ellipse ROIs are saved and/or
recreated automatically in a script; however,
poly freehand and freehand ROIs are not
saved or recreated automatically in a script.

Return Values

−1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

Void SomeFunction(void)
{
//Start of Dec Section
//8-bit grayscale images
CcGrayImage256* C8BitImageIn;
CcGrayImage256* C8BitImageOut;

//Where operation takes place
CcRoiRect* CRectRoi;
int iFillValue;
BOOL bKeepOrigSize;
//End of Dec Section

//Allocate memory for objects

Using the Image Modifier Tool API

1

1

1

17

17

1

1

1

1

Example (cont.) C8BitImageIn = new
CcGrayImage256();

C8BitImageOut = new
CcGrayImage256();

CRectRoi = new CcRoiRect();

//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectROI->SetRoiImageCord((VOID*)

&stROI);

//Open image from disk (or get
//image data from frame grabber
C8BitImageIn->OpenBMPFile(

“InImage.bmp”);

//Set fill value to black
iFillValue = 0;

//Do not keep the original size
//Make output image the same size
//as CRectRoi)
bKeepOrigSize = FALSE;

//Crop the image
CImgMod.Crop(C8BitImageIn,

C8BitImageOut, CRectRoi,
iFillValue, bKeepOrigSize);

//Save output to disk
C8BitImageOut->SaveBMPFile(

“OutImage.bmp”);
655

Chapter 17

656
FlipRotate

Example (cont.) //Free memory
delete C8BitImageIn;
delete C8BitImageOut;
delete CRectRoi;
}

Syntax int FlipRotate(CcImage* CImageIn,
CcImage* CImageOut,
int iOperation,
int iRotateAmount);

Include File C_ImgMod.h

Description Flips an image horizontally or vertically, or
rotates an image by 90, 180, or 270 degrees.

Parameters

Name:

Description:

CImageIn

Image that is derived from class CcImage and
used as the input image.

Name:

Description:

CImageOut

Image that is derived from class CcImage and
used as the output image.

Name:

Description:

iOperation

Specifies one of the following operations:

• FLIPROTATE_FLIP_HORZ − Flips the
image horizontally.

• FLIPROTATE_FLIP_VERT − Flips the
image vertically.

• FLIPROTATE_ROTATE − Rotates the
image by iRotateAmount.

Using the Image Modifier Tool API

1

1

1

17

17

1

1

1

1

Name:

Description:

iRotateAmount

Specifies the amount of rotation in degrees to
apply to the input image. The value can be 90,
180, or 270.

Notes None

Return Values

−1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

Void SomeFunction(void)
{
//Start of Dec Section
//8-bit grayscale images
CcGrayImage256* C8BitImageIn;
CcGrayImage256* C8BitImageOut;
int iOperation;
int iRotateAmount;
//End of Dec Section

//Allocate memory for objects
C8BitImageIn = new

CcGrayImage256();
C8BitImageOut = new

CcGrayImage256();

//Open image from disk (or get
//image data from frame grabber
C8BitImageIn->OpenBMPFIle(

“InImage.bmp”);

//Rotate the image by 90 degrees
iOperation = FLIPROTATE_ROTATE;
iRotateAmount = 90;
657

Chapter 17

658
Scale

Example (cont.) CImgMod.FlipRotate(C8BitImageIn,
C8BitImageOut,iOperation,
iRotateAmount);

//Save output to disk
C8BitImageOut->SaveBMPFile(

“OutImage.bmp”);

//Free memory
delete C8BitImageIn;
delete C8BitImageOut;
}

Syntax int Scale(CcImage* CImageIn,
CcImage* CImageOut,
int iScaleFactor,
int iFillValue);

Include File C_ImgMod.h

Description Scales an image by 25, 50, 100, 200, or 400
percent.

Parameters

Name:

Description:

CImageIn

Image that is derived from class CcImage and
used as the input image.

Name:

Description:

CImageOut

Image that is derived from class CcImage and
used as the output image.

Using the Image Modifier Tool API

1

1

1

17

17

1

1

1

1

Name:

Description:

iScaleFactor

Specifies the scale factor (in percent) that is
applied to the input image. Values can be 25,
50, 100, 200, or 400.

Name:

Description:

iFillValue

Specifies the background color of the image.
This parameter is required only for images
that are reduced in size (scale factor is 25 or
50). Values range from 0 (black) to 255 (white).

Notes None

Return Values

−1 Unsuccessful.

0 Successful.

Example The following is a sample code fragment:

Void SomeFunction(void)
{
//Start of Dec Section
//8-bit grayscale images
CcGrayImage256* C8BitImageIn;
CcGrayImage256* C8BitImageOut;
int iScaleFactor;
int iFillValue;
//End of Dec Section

//Allocate memory for objects
C8BitImageIn = new

CcGrayImage256();
C8BitImageOut = new

CcGrayImage256();
//Open image from disk (or get
//image data from frame grabber
659

Chapter 17

660
Example (cont.) C8BitImageIn->OpenBMPFIle(
“InImage.bmp”);

//Scale the image by 50%
iScaleFactor = 50;
//Set the fill color to black
iFillValue = 0;

CImgMod.Scale(C8BitImageIn,
C8BitImageOut,iScaleFactor,
iFillValue);

//Save output to disk
C8BitImageOut->SaveBMPFile(

“OutImage.bmp”);

//Free memory
delete C8BitImageIn;
delete C8BitImageOut;
}

18
Using the Line Profile Tool API

Overview of the Line Profile Tool API . 662

CcLineProfile Methods . 664

Example Program Using the Line Profile Tool API. 678
661

Chapter 18

662
Overview of the Line Profile Tool API
The API for the Line Profile tool has one object only: the
CcLineProfile class. This tool creates a line profile for an input image
(derived from class CcImage) with respect to a given line ROI
(derived from class CcRoiBase). The CcLineProfile class is derived
from the CcCurve DT Vision Foundry class. You can use the methods
of the CcCurve class to access the line profile data. For further
information on these objects, refer to the example program at the end
of this chapter.

The CcLineProfile class uses a standard constructor and destructor
and the class methods listed in Table 35.

Table 35: CcLineProfile Object Methods

Method Type Method Name

Constructor &
Destructor Method

CcLineProfile();

~CcLineProfile();

CcLineProfile
Class Methods

int MakeProfile(CcImage* CImage,CcRoiLine* CRoi,
 int iAverage);

int AverageProfile(int iAverage);

int TakeDerivative(int iDelta);

int GainAndOffset(float fGain,float fOffset);

PIXELGROUPING* GetPixelLocationsAll(void);

PIXELGROUPING* GetPixelLocationsCenter(void);

float GetLineDistance(float fPixelLocationStart,
 float fPixelLocationEnd,CcCalibration* CalibrationObject);

float GetStraightDistance(float fPixelLocationStart,
 float fPixelLocationEnd,CcCalibration* CalibrationObject);

int GetExactPoint(float fPixelLocation,float* fExactX,
 float* fExactY,CcCalibration* CalibrationObject);

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

CcLineProfile
Class Methods
(cont.)

float FindUPEdge(int iEdgeNumber,float fLoNoiseLimit,
 float fHiNoiseLimit);

float FindDNEdge(int iEdgeNumber,float fLoNoiseLimit,
 float fHiNoiseLimit);

float FindBestEdge(int iDirection = ANY_EDGE);

Table 35: CcLineProfile Object Methods (cont.)

Method Type Method Name
663

Chapter 18

664
CcLineProfile Methods
This section describes each method of the CcLineProfile class in
detail.

MakeProfile

Syntax int MakeProfile(
 CcImage* CImage,
 CcRoiLine* CRoi,
 int iAverage);

Include File C_LProf.h

Description Creates a line profile of the image with respect
to the given ROI.

Parameters

Name:

Description:

CImage

Image derived from the CcImage class and
used as an input image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iAverage

Number of pixels on each side of the center
pixel to be averaged with the center pixel (the
width of the line profile).

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

Notes This method uses images derived from the DT
Vision Foundry-supplied CcImage class.
These include 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, and 24-bit color
images. It also works with your own images
derived from these classes. For more
information, see Chapter 2 starting on page
11.

The CcLineProfile class is derived from the
CcCurve class. After making it, you can add
the line profile to the list of curves of a graph
class and then easily display the graph
containing the line profiles in any window.

To access the line profile data, you can call the
methods of the CcCurve class. For more
information, see Chapter 2 starting on page
11, and the example program at the end of this
chapter.

When the line profile is calculated, each point
on the line ROI (called a center point) is
calculated separately. If the value for iAverage
is 0, then only the points that lie directly on
the line ROI are used in the line profile
calculation; its width is 1 pixel wide. If the
value for iAverage is 1, then three points are
used in the calculation of each center point;
the center point lying directly on the line ROI,
one pixel above (or right of) the center point,
and one point below (or left of) the center
point. The averaged points are points taken
perpendicular to the line ROI at the center
point.
665

Chapter 18

666
AverageProfile

TakeDerivative

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int AverageProfile(int iAverage);

Include File C_LProf.h

Description Smooths the line profile by averaging each
point in the line profile with its neighbors.

Parameters

Name:

Description:

iAverage

The number of neighbor points on each side
of the center point to include in the averaging.

Notes Each point in the line profile is averaged with
its neighbor points on each side. The iAverage
parameter is the number of neighbors (on
each side of the point being averaged)
included in the averaging calculation.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int TakeDerivative(int iDelta);

Include File C_LProf.h

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

GainAndOffset

Description Takes a pseudo-derivative of the line profile
and places the result back into the line profile.

Parameters

Name:

Description:

iDelta

The number of neighbor points on each side
of the center point included in the calculation.

Notes This method finds the slope of the line profile
at each point in the line profile, and then
replaces the line profile with its
pseudo-derivative. A value of 1 for iDelta
includes the center point and each of its
neighbors in the slope calculation.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GainAndOffset(
 float fGain,
 float fOffset);

Include File C_LProf.h

Description Applies a gain and offset to the line profile.

Parameters

Name:

Description:

fGain

The gain that is applied to the line profile.

Name:

Description:

fOffset

The offset that is applied to the line profile.
667

Chapter 18

668
GetPixelLocationsAll

GetPixelLocationsCenter

Notes This method applies the given gain and offset
to each point in the line profile.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax PIXELGROUPING*
GetPixelLocationsAll(void);

Include File C_LProf.h

Description Returns every pixel used in the calculation of
the line profile.

Return Values

The points as a pixel-grouping
structure.

Syntax PIXELGROUPING*
GetPixelLocationsCenter(void);

Include File C_LProf.h

Description Returns pixels that were used in the
calculation of the line profile as the center
pixels.

Return Values

The points as a pixel-grouping
structure.

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

GetLineDistance

Syntax float GetLineDistance(
 float fPixelLocationStart,
 float fPixelLocationEnd,
 CcCalibration*

CalibrationObject);

Include File C_LProf.h

Description Returns the line distance from the starting
point to the ending point measured along the
line profile.

Parameters

Name:

Description:

fPixelLocationStart

The position along the line profile’s x-axis at
which to start taking the measurement.

Name:

Description:

fPixelLocationEnd

The position along the line profile’s x-axis at
which to stop taking the measurement.

Name:

Description:

CalibrationObject

A pointer to a Calibration object to use if you
want the measurement in calibrated units. If
this value is NULL, the measurement is in
pixels.

Notes The fPixelLocationStart and fPixelLocationEnd
points along the x-axis of the profile
correspond exactly to the minimum and
maximum measurement bars described
earlier in this chapter.
669

Chapter 18

670
GetStraightDistance

Notes (cont.) Both the starting point and ending points
correspond to pixel locations in the image that
were originally used to create the line profile.
This is the distance from the starting point to
the ending point measured along the line
profile, which is not necessarily the straight
distance from the starting point to the ending
point. To measure the straight distance
between the starting and ending points, use
GetStraightDistance().

The fPixelLocationStart and fPixelLocationEnd
points are input with subpixel accuracy and
are measured from the first point in the line
profile, which always has a value of 0.

Return Values

The points as a pixel-grouping
structure.

Syntax float GetStraightDistance(
 float fPixelLocationStart,
 float fPixelLocationEnd,
 CcCalibration*

CalibrationObject);

Include File C_LProf.h

Description Returns the straight distance from the starting
point to the ending point.

Parameters

Name:

Description:

fPixelLocationStart

The position along the line profile’s x-axis at
which to start taking the measurement.

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

Name:

Description:

fPixelLocationEnd

The position along the line profile’s x-axis at
which to stop taking the measurement.

Name:

Description:

CalibrationObject

A pointer to a Calibration object to use if you
want the measurement in calibrated units. If
this value is NULL, the measurement is in
pixels.

Notes The fPixelLocationStart and fPixelLocationEnd
points along the x-axis of the profile
correspond exactly to the minimum and
maximum measurement bars described
earlier in this chapter.

Both the starting point and ending points
correspond to pixel locations in the image that
were originally used to create the line profile.
This is the straight distance from the starting
point to the ending point, which is not
necessarily the distance from the starting
point to the ending point measured along the
line profile. To measure the distance between
the starting and ending points along the line
profile, use the method GetLineDistance().

The fPixelLocationStart and fPixelLocationEnd
points are input with subpixel accuracy and
are measured from the first point in the line
profile, which always has a value of 0.

Return Values

The points as a pixel-grouping
structure.
671

Chapter 18

672
GetExactPoint

Syntax int GetExactPoint(
 float fPixelLocation,
 float* fExactX,
 float* fExactY,
 CcCalibration*

CalibrationObject);

Include File C_LProf.h

Description Returns the x,y calibrated image position for
the given location in the line profile.

Parameters

Name:

Description:

fPixelLocation

The desired position along the line profile’s
x-axis.

Name:

Description:

fExactX

The subpixel x-location in the image that
corresponds to the given fPixelLocation.

Name:

Description:

fExactY

The subpixel y-location in the image that
corresponds to the given fPixelLocation.

Name:

Description:

CalibrationObject

A pointer to the Calibration object to use if
you want the returned point in calibrated
units. If this value is NULL, the returned point
is in pixels.

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

FindUPEdge

Notes The fPixelLocation point along the x-axis of the
profile corresponds exactly to the minimum
or maximum measurement bars described
earlier in this chapter.

Each point in the line profile (fPixelLocation)
corresponds to a pixel location in the image
that was originally used to create the line
profile. This method returns the
corresponding pixel location (fExactX,
fExactY) for the given line profile location
(fPixelLocation). All measurements have
subpixel accuracy.

fPixelLocation is an input with subpixel
accuracy and is measured from the first point
in the line profile, which always has a value of
0.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax float FindUPEdge(
 int iEdgeNumber,
 float fLoNoiseLimit,
 float fHiNoiseLimit);

Include File C_LProf.h

Description Returns the subpixel location in the line
profile for the desired up edge.
673

Chapter 18

674
Parameters

Name:

Description:

iEdgeNumber

The desired up edge in the line profile.

Name:

Description:

fLoNoiseLimit

The value of the low noise limit.

Name:

Description:

fHiNoiseLimit

The value of the high noise limit.

Notes Before calling this method, first make a line
profile by calling the method MakeProfile(),
then take its second derivative by calling the
method TakeDerivative() twice. The position
in the line profile (with a second derivative)
that crosses the 0 y-axis is an edge.

You may have unwanted noise edges due to
noise in your images. To eliminate these noise
edges, enter a high and low noise limit
(fLoNoiseLimit and fHiNoiseLimit).

An up edge is where the second derivative
line profile crosses the 0 y-axis with a positive
slope. The curve must start below the low
noise limit, cross the 0 y-axis, and continue a
constant positive slope until it reaches the
high noise limit.

Return Values

−1 No edge was found.

The subpixel location of the
found edge.

Edge was found.

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

FindDNEdge

Syntax float FindDNEdge(
 int iEdgeNumber,
 float fLoNoiseLimit,
 float fHiNoiseLimit);

Include File C_LProf.h

Description Returns the subpixel location in the line
profile for the desired down edge.

Parameters

Name:

Description:

iEdgeNumber

The desired down edge in the line profile.

Name:

Description:

fLoNoiseLimit

The value of the low noise limit.

Name:

Description:

fHiNoiseLimit

The value of the high noise limit.

Notes Before calling this method, first make a line
profile by calling the method MakeProfile(),
then take its second derivative by calling the
method TakeDerivative() twice. The position
in the line profile (with a second derivative)
that crosses the 0 y-axis is an edge.

You may have unwanted noise edges due to
noise in your images. To eliminate these noise
edges, enter a high and low noise limit
(fLoNoiseLimit and fHiNoiseLimit).
675

Chapter 18

676
FindBestEdge

Notes (cont.) A down edge is where the second derivative
line profile crosses the 0 y-axis with a negative
slope. The curve must start above the high
noise limit, cross the 0 y-axis, and continue a
constant negative slope until it reaches the
low noise limit.

Return Values

−1 No edge was found.

The subpixel location of the
found edge.

Edge was found.

Syntax float FindBestEdge(
int iDirection = ANY_EDGE);

Include File C_LProf.h

Description Returns the subpixel location in the line
profile for the most distinct/largest edge.

Parameters

Name:

Description:

iDirection

The direction of the desired edge, which can
be one of the following:

• ANY_EDGE − Finds the best edge in any
direction.

• UP_EDGE_ONLY − Finds the best up
edge.

• DN_EDGE_ONLY − Finds the best down
edge.

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

Notes Before calling this method, first make a line
profile by calling the method MakeProfile(),
then take its second derivative by calling the
method TakeDerivative() twice. The position
in the line profile (with a second derivative)
that crosses the 0 y-axis is an edge.

You may have several edges along the line
profile. This method finds the best edge along
the entire profile in the given direction.

A down edge is where the second derivative
line profile crosses the 0 y-axis with a negative
slope. An up edge is where the second
derivative line profile crosses the 0 Y-axis with
a positive slope.

Return Values

−1 No edge was found.

The subpixel location of the
found edge.

Edge was found.
677

Chapter 18

678
Example Program Using the Line Profile
Tool API

This example looks for the first true down edge that the given line
ROI crosses within the given image. This example is intended to
show you how you could locate an edge automatically as you did
interactively using the Line Profile tool, described in the DT Vision
Foundry User’s Manual. The example returns the coordinate of the
edge, in image coordinates.

Note: This example is made from code fragments with error
checking removed. In an actual program, you should check return
values and pointers. This example follows the example given in the
DT Vision Foundry User’s Manual.

POINT* FindFirstEdge(CcImage* CImage,CcRoiLine*
CRoi)

{
CcLineProfile* CLProfile;
//Object to perform a line profile
STPOINTS* stPoints;
//Pointer to profile curve data
static POINT PointReturn;
//POINT structure to hold edge coordinates

//Allocate objects
CLProfile = new CcLineProfile();

//Create line profile with a line width of 11
(5+5+1)
CLProfile->MakeProfile(CImageIn1,CRoi,5);

//Smooth line profile by averaging each point with
//its neighbors

Using the Line Profile Tool API

1

1

1

1

18

18

1

1

1

//This will average each pixel with 9 neighbors on
//‘each’ side (19 points in all)
CLProfile->AverageProfile(9);

//Take second derivative of profile to denote edges
//Use center point and 1 pixel on each side of
//center point in slope calculation
CLProfile->TakeDerivative(1); //Take first
CLProfile->TakeDerivative(1);
//Take again to make second

//Smooth derivative of profile as not to get
//a false edge
CLProfile->AverageProfile(9);

//Apply a gain of 100 to find zero-crossing easier
CLProfile->GainAndOffset(100,0);

//Get data for derivative
stPoints = CLProfile->GetCurveData();

//Search through data looking for a zero-crossing
//of the second derivative. We will look for a
//negative slope and a crossing larger than 20.
// This is to denote an edge and not return a false
//edge due to noise.
for(x=0; x< CLProfile->GetNumberOfPoints()-1; x++)
{
 //Check for zero crossing with negative slope
 //(down edge)
 if((stPoints[x].fY > 0) && (stPoints[x+1].fY <

0))
 //Is it a large zero crossing or just noise
 if((stPoints[x].fY - stPoints[x+1]) >= 20)
 {
//Copy point of crossing
PointReturn.x=stPoints[x].fX;
679

Chapter 18

680
PointReturn.y=stPoints[x].fY;
//Free memory
delete CLProfile;
return(&PointReturn);
 }
}
//Free memory
delete CLProfile;

return(NULL);
}

19
Using the Morphology Tool API

Overview of the Morphology Tool API 682

CcMorphology Methods . 684

Example Program Using the Morphology Tool API 697
681

Chapter 19

682
Overview of the Morphology Tool API
The API for the Morphology tool has one object only: the
CcMorphology class. This tool performs a morphological operation
on a binary input image (derived from class CcImage), and places the
result in an output image. The operation is performed with respect to
the given ROI (derived from class CcRoiBase).

The CcMorphology object uses a standard constructor and destructor
and the class methods listed in Table 36.

Table 36: CcMorphology Class Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcMorphology();

~ CcMorphology();

CcMorphology
Class Methods

int SetKernel(STMORPHKERNEL* stKer);

int GetKernel(STMORPHKERNEL* stKer);

int RestoreKernel(char* cFileName);

int SaveKernel(char* cFileName);

int OpenBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi,
 int iIterations);

int CloseBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi,
 int iIterations);

int ErodeBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi,
 int iIterations);

int DilateBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi,
 int iIterations);

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

CcMorphology
Class Methods
(cont.)

int SkeletonBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi);

int WatershedBinary(CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,CcRoiBase* CRoi);

int WaterShedDistance(CcBinaryImage* CImageIn,
 CcImage* CImageOut,CcRoiBase* Croi);

Table 36: CcMorphology Class Methods (cont.)

Method Type Method Name
683

Chapter 19

684
CcMorphology Methods
This section describes each method of the CcMorphology class in
detail.

SetKernel

Syntax int SetKernel(
STMORPHKERNEL* stKer);

Include File C_Morph.h

Description Sets the kernel for the performed
morphological operation.

Parameters

Name:

Description:

stKer

Pointer to a structure of type
STMORPHKERNEL. This parameter holds
information for the kernel.

Notes This method sets the kernel information that
is used by the class when a morphological
operation that uses a kernel is called. The
kernel is of type STMORPHKERNEL and is
defined as follows:

struct MKernelTag {
int iWidth;
int iHeight;
int iXCenterOffset;
int iYCenterOffset;
int Kernel[7][7];
};
typedef MKernelTag STMORPHKERNEL;

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

GetKernel

Notes (cont.) The entries for this structure are as follows:

• iWidth − The width of the kernel in pixels.

• iHeight − The height of the kernel in
pixels.

• iXCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
x-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• iYCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
y-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• Kernel[7][7] − A 7 x 7 array of values to
hold the coefficients of the kernel.
Depending on the width and height of the
kernel, not all of these values can be used.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int GetKernel(
STMORPHKERNEL* stKer);

Include File C_Morph.h

Description Returns the kernel for the performed
morphological operation.
685

Chapter 19

686
Parameters

Name:

Description:

stKer

Pointer to a a structure of type
STMORPHKERNEL. This parameter holds
information for the kernel.

Notes This method gets the kernel information that
is used by the class when a morphological
operation that uses a kernel is called. The
kernel is of type STMORPHKERNEL and is
defined as follows:

struct MKernelTag {
int iWidth;
int iHeight;
int iXCenterOffset;
int iYCenterOffset;
int Kernel[7][7];
};
typedef MKernelTag STMORPHKERNEL;

The entries for this structure are as follows:

• iWidth − The width of the kernel in pixels.

• iHeight − The height of the kernel in
pixels.

• iXCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
x-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

• iYCenterOffset − The offset from the
lower-left corner (0,0) of the kernel to the
y-location of the active pixel (usually
thought of as the center pixel). For a 3 x 3
centered kernel, this value is 1.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

RestoreKernel

Notes (cont.) • Kernel[7][7] − A 7 x 7 array of values to
hold the coefficients of the kernel.
Depending on the width and height of the
kernel, not all of these values can be used.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int RestoreKernel(
char* cFileName);

Include File C_Morph.h

Description Restores a kernel saved on disk.

Parameters

Name:

Description:

cFileName

Full path name of the file that contains the
kernel you wish to restore.

Notes This method opens a kernel stored in the file
cFileName. It restores all information for the
kernel defined in the structure
STMORPHKERNEL, not just the coefficients
of the kernel.

Return Values

–1 Unsuccessful.

0 Successful.
687

Chapter 19

688
SaveKernel

OpenBinary

Syntax int SaveKernel(char* cFileName);

Include File C_Morph.h

Description Saves the kernel to disk.

Parameters cFileName

Full path name of the file that is created to
hold the kernel information.

Name:

Description:

This method saves the kernel that is used by
the CcMorphology class to disk. It saves all
information given in the structure
STMORPHKERNEL, not just the kernel
coefficients. You can retrieve this information
using RestoreKernel().

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int OpenBinary(
 CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,
 CcRoiBase* CRoi,
 int iIterations);

Include File C_Morph.h

Description Performs the morphological opening
operation.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

CloseBinary

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iIterations

The number of openings to perform.

Notes This method performs the morphological
opening operation. It uses information in the
structure STMORPHKERNEL, which is set
using the methods SetKernel() and/or
RestoreKernel(). It performs the opening
operation the number of times specified by
iIterations.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int CloseBinary(
 CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,
 CcRoiBase* CRoi,
 int iIterations);
689

Chapter 19

690
Include File C_Morph.h

Description Performs the morphological closing
operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iIterations

The number of closings to perform.

Notes This method performs the morphological
closing operation. It uses information in the
structure STMORPHKERNEL, which is set
using SetKernel() and/or RestoreKernel(). It
performs the closing operation the number of
times specified by iIterations.

Return Values

–1 Unsuccessful.

0 Successful.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

ErodeBinary

Syntax int ErodeBinary(
 CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,
 CcRoiBase* CRoi,
 int iIterations);

Include File C_Morph.h

Description Performs the morphological erosion
operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iIterations

The number of erosions to perform.

Notes This method performs the morphological
erosion operation. It uses information in the
structure STMORPHKERNEL, which is set
using SetKernel() and/or RestoreKernel(). It
performs the erosion operation the number of
times specified by iIterations.
691

Chapter 19

692
DilateBinary

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int DilateBinary(
 CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,
 CcRoiBase* CRoi,
 int iIterations);

Include File C_Morph.h

Description Performs the morphological dilation
operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Name:

Description:

iIterations

The number of dilations to perform.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1
SkeletonBinary

Notes This method performs the morphological
dilation operation. It uses information in the
structure STMORPHKERNEL, which is set
using SetKernel() and/or RestoreKernel(). It
performs the dilation operation the number of
times specified by iIterations.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int SkeletonBinary(
 CcBinaryImage* CImageIn,
 CcBinaryImage* CImageOut,
 cRoiBase* CRoi);

Include File C_Morph.h

Description Performs the morphological skeletonization
operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

ImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.
693

Chapter 19

694
WatershedBinary

Notes This method performs the morphological
skeletonization operation. It does not use a
kernel to perform the operation.

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int WatershedBinary(
 cBinaryImage* CImageIn,
 cBinaryImage* CImageOut,
 cRoiBase* CRoi);

Include File C_Morph.h

Description Performs the morphological watershed
operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Binary image derived from the CcImage class.
It is used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1
WaterShedDistance

Notes This method performs the morphological
watershed operation. It does not use a kernel
to perform the operation. This operation calls
the public class method WaterShedDistance(
) as part of its calculation. You can view the
distance calculation used by this operation by
calling WaterShedDistance().

Return Values

–1 Unsuccessful.

0 Successful.

Syntax int WaterShedDistance(
 CcBinaryImage* CImageIn,
 CcImage* CImageOut,
 CcRoiBase* CRoi);

Include File C_Morph.h

Description Performs only the distance portion of the
watershed operation.

Parameters

Name:

Description:

CImageIn

Binary image derived from the CcImage class.
It is used as the input image.

Name:

Description:

CImageOut

Image derived from the CcImage class. It is
used as the output image.

Name:

Description:

CRoi

ROI area in which to perform the operation.
695

Chapter 19

696
Notes This method performs the distance portion of
the morphological watershed operation. It
does not use a kernel to perform the
operation. This public operation is called from
WatershedBinary() as part of its calculation.
You can view the distance calculation used by
the WatershedBinary() operation by calling
this method.

This method calculates the distance from each
point in a foreground particle to its closest
perimeter point. The distance calculated is
stored in the pixel value for the given point.
Thus, the output of this method is not a binary
image. You can use an 8-bit or 32-bit grayscale
image as the output image.

Return Values

–1 Unsuccessful.

0 Successful.

Using the Morphology Tool API

1

1

1

1

1

19

19

1

1

Example Program Using the Morphology
Tool API

This example program performs an opening operation on an input
image using the default 3 x 3 flat kernel. The operation is performed
with respect to the given ROI. You could perform this operation to
clean an image just before performing blob analysis on it.

Note: This example is made from code fragments with error
checking removed. In an actual program, you should check return
values and pointers.

int CleanFunction(CcBinaryImage* CImage, CcRoiBase*
CRoi)

{
CcMorphology* CMorph;
//Object to perform morphological operation

//Create objects
CMorph=new CcMorphology();

//Run the Opening morphological operation.
// We will put the result back into the same image.
// We will only perform 1 iteration.
CMorph->OpenBinary(CImage,CImage,CRoi,1);

//Free memory
delete CMorph;
return(0);
}

697

Chapter 19

698

20
Using the Picture Tool API

Overview of the Picture Tool API . 700

CcPictureTool Methods . 704
699

Chapter 20

700
Overview of the Picture Tool API
The Picture tool is derived from the base picture class CcPictureTool.
CcPictureTool allows you to acquire frames from a frame grabber
board. The Picture Tool API is intended to be used with the Device
Manager API, described on page 206.

All methods of the Picture tool work in approximately the same way
for all frame grabber boards. If your board does not support a
particular operation, the method returns either a value less than 0 or
FALSE.

The CcPictureTool class uses a standard constructor and destructor
and the class methods listed in Table 37.

Table 37: CcPictureTool Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcPictureTool(void);

~CcPictureTool(void);

CcPictureTool
Class Methods

int GetDeviceCaps(int* pnDevCaps);

BOOL IsDeviceCapSupported(int nDeviceCap);

int SetDeviceProperty (int nPropId, int nValue);

int GetDeviceProperty (int nPropId, int* pnValue);

int GetInputSourceCount(int *pnSource);

int SetInputSource(int nSource);

int GetInputSource(int *pnSource);

int SetTimeout(int nTimeOut);

int GetTimeout(int pnTimeOut);

int SetImageScale(int nHorzScale, int nVertScale);

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

CcPicture Class
Methods (cont.)

int GetImageScale(int *pnHorzScale, int *pnVertScale);

int SetHorzImageScale(int nHorzScale);

int GetHorzImageScale(int *pnHorzScale);

int SetVertImageScale(int nVertScale);

int GetVertImageScale(int *pnVertScale);

int GetScaledImageDims(int *pnWidth, int *pnHeight);

int GetScaledImageWidth(int *pnWidth);

int GetScaledImageHeight(int *pnHeight);

int GetImageScaleLimits(PDL_IMAGE_SCALE_LIMITS
*pLimits);

int SetImageDims(int nWidth, int nHeight);

int GetImageDims(int *pnWidth, int *pnHeight);

int SetImageWidth(int nWidth);

int GetImageWidth(int *pnWidth);

int SetImageHeight(int nHeight);

int GetImageHeight(int *pnHeight);

int GetImageDimsLimits(PDL_IMAGE_DIMS_LIMITS
*pLimits);

int SetImageType(int nImageType);

int GetImageType(int *pnImageType);

int SetImageTypeEx(int nImageTypeEx);

int u(int *pnImageTypeEx);

int GetImageTypeLimits(PDL_IMAGE_TYPE_LIMITS
*pLimits);

Table 37: CcPictureTool Object Methods (cont.)

Method Type Method Name
701

Chapter 20

702
CcPicture Class
Methods (cont.)

int GetCompatibleImage(CcImage **ppImage);

int SetImageAverage(int nImageCount);

int EnableTimeStamping(BOOL bEnable);

BOOL IsTimeStampingEnabled();

int StartStreaming();

int StopStreaming();

int WaitForImage();

BOOL IsStreamingInProgress();

int AcquireImage(CcImage *pImage);

int TimedAcquireToAVI(CcAVI pAVI, int nImageCount, int
nTimeDelay);

int TimedAcquireToDisc(LPCSTR szDir, LPCSTR
szBaseFileName, int nImageCount,int nCountStart, int
nTimeDelay);

int TimedAcquireToMemory(LPCSTR szBaseImageName,
int nImageCount,int nCountStart, int nTimeDelay, CcList
*pImageList);

int StartLiveVideo(HWND hWindow);

int StopLiveVideo();

BOOL IsLiveVideoRunning();

int SetDeviceConfig(LPSTREAM pStream);

int GetDeviceConfig(LPSTREAM pStream);

int LoadDeviceConfig(LPSTR szFileName);

int SaveDeviceConfig(LPCSTR szFileName);

int GetDeviceConfigFileExt(LPSTR szFileExt, int nBufSize);

Table 37: CcPictureTool Object Methods (cont.)

Method Type Method Name

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

CcPicture Class
Methods (cont.)

int GetDeviceConfigFileDesc(LPSTR szFileDesc, int
nBufSize);

int ShowDeviceConfigDialog(HWND hParent);

void GetErrorText(LPSTR szErrorText, int nBufSize);

Table 37: CcPictureTool Object Methods (cont.)

Method Type Method Name
703

Chapter 20

704
CcPictureTool Methods
This section describes each method of the CcPictureTool class in
detail.

GetDeviceCaps

Syntax int GetDeviceCaps(
int* pnDevCaps
);

Include File C_PicTool.h

Description Returns the capabilities for the imaging device
that is associated with the CcImageDevice
object.

Parameters

Name:

Description:

pnDevCaps

A pointer to an integer that receives the device
capabilities bit field. Possible values are as
follows:

• IMG_CAP_TIMEOUT – Indicates
whether the device supports timeouts. If
this flag is enabled, the device supports the
following methods: SetTimeout, described
on page 718, and GetTimeout, described
on page 720.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Description (cont): • IMG_CAP_IMAGESCALE – Indicates
whether the device supports scaling. If this
flag is enabled, the device supports the
following methods: GetImageScaleLimits,
described on page 733, GetImageScale,
described on page 722, SetImageScale,
described on page 721,
GetHorzImageScale, described on page
725, SetHorzImageScale, described on
page 724, GetVertImageScale, described
on page 727, SetVertImageScale,
described on page 726,
GetScaledImageDims, described on page
729, GetScaledImageWidth, described on
page 730, and GetScaledImageHeight,
described on page 731.

• IMG_CAP_STREAMING – Indicates
whether the device supports streaming. If
this flag is enabled, the device supports the
following methods: StartStreaming,
described on page 760, and
StopStreaming, described on page 761.

• IMG_CAP_LIVEVIDEO – Indicates
whether the device supports displaying
live video in a window. If this flag is
enabled, the device supports the following
methods: StartLiveVideo, described on
page 774, and StopLiveVideo, described
on page 775.
705

Chapter 20

706
Description (cont.): • IMG_CAP_DEVICEPROPS – Indicates
whether the device supports
device-specific programmable properties.
If this flag is enabled, the device supports
the following methods:
SetDeviceProperty, described on page
712, and GetDeviceProperty, described on
page 713.

• IMG_CAP_DEVICECONFIG – Indicates
whether the device allows the current
device configuration (for the current
source) to be persistent. If this flag is
enabled, the device supports the following
methods: GetDeviceConfig, described on
page 780, SetDeviceConfig, described on
page 777, LoadDeviceConfig, described
on page 783, SaveDeviceConfig, described
on page 784, GetDeviceConfigFileExt,
described on page 787,
andGetDeviceConfigFileDesc, described
on page 789.

• IMG_CAP_CONFIGDIALOG – Indicates
whether the device provides a
configuration dialog box or property page
that can be used to configure the device. If
this flag is enabled, the device supports the
ShowDeviceConfigDialog method,
described on page 791.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Description (cont.): • IMG_CAP_CFGPERSOURCE – Indicates
whether the device configurations are
supported on a per-source basis or on a
per-device basis. If this flag is enabled, the
device supports a separate device
configuration for each source. If this flag is
cleared, only a single configuration is
supported for the entire device regardless
of the current video input source.

Notes None

Return Values

0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to image device object.
CcImageDevice *pid;
//Integer to receive the device
//capabilities.
int nDevCaps;
//Holds the error text.
TCHAR szText[200];

//Determine whether the device
//supports live video
if (pid->GetDeviceCaps(&nDevCaps)

<0)
{

//Get error text
//pid->GetErrorText(szText,

200);
}

707

Chapter 20

708
IsDeviceCapSupported

Example (cont.) //Does the device support
//streaming?
if (nDevCaps & IMG_CAP_STREAMING)
{

//Yes, streaming is supported.
}
else
{

//No, streaming is not
//supported.

}

Syntax BOOL IsDeviceCapSupported(
int nDeviceCap
);

Include File C_PicTool.h

Description Determines whether the specified capability is
supported by the current device.

Parameters

Name:

Description:

nDeviceCap

The device capability. The value can be one of
the following:

• IMG_CAP_TIMEOUT – Indicates
whether the device supports timeouts. If
this flag is enabled, the device supports the
following methods: SetTimeout, described
on page 718, and GetTimeout, described
on page 720.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Description (cont.): • IMG_CAP_IMAGESCALE – Indicates
whether the device supports scaling. If this
flag is enabled, the device supports the
following methods: GetImageScaleLimits,
described on page 733, GetImageScale,
described on page 722, SetImageScale,
described on page 721,
GetHorzImageScale, described on page
725, SetHorzImageScale, described on
page 724, GetVertImageScale, described
on page 727, SetVertImageScale,
described on page 726,
GetScaledImageDims, described on page
729, GetScaledImageWidth, described on
page 730, and GetScaledImageHeight,
described on page 731.

• IMG_CAP_STREAMING – Indicates
whether the device supports streaming. If
this flag is enabled, the device supports the
following methods: StartStreaming,
described on page 760, and
StopStreaming, described on page 761.

• IMG_CAP_LIVEVIDEO – Indicates
whether the device supports displaying
live video in a window. If this flag is
enabled, the device supports the following
methods: StartLiveVideo, described on
page 774, and StopLiveVideo, described
on page 775.
709

Chapter 20

710
Description (cont.): • IMG_CAP_DEVICEPROPS – Indicates
whether the device supports
device-specific programmable properties.
If this flag is enabled, the device supports
the following methods:
SetDeviceProperty, described on page
712, and GetDeviceProperty, described on
page 713.

• IMG_CAP_DEVICECONFIG – Indicates
whether the device allows the current
device configuration (for the current
source) to be persistent. If this flag is
enabled, the device supports the following
methods: GetDeviceConfig, described on
page 780, SetDeviceConfig, described on
page 777, LoadDeviceConfig, described
on page 783, SaveDeviceConfig, described
on page 784, GetDeviceConfigFileExt,
described on page 787,
andGetDeviceConfigFileDesc, described
on page 789.

• IMG_CAP_CONFIGDIALOG – Indicates
whether the device provides a
configuration dialog box or property page
that can be used to configure the device. If
this flag is enabled, the device supports the
ShowDeviceConfigDialog method,
described on page 791.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Description (cont.): • IMG_CAP_CFGPERSOURCE – Indicates
whether the device configurations are
supported on a per-source basis or on a
per-device basis. If this flag is enabled, the
device supports a separate device
configuration for each source. If this flag is
cleared, only a single configuration is
supported for the entire device regardless
of the current video input source.

Notes None

Return Values

TRUE The current device supports the specified
capability.

FALSE The current device does not support the
specified capability.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Does the device support
//streaming?
if (pid->IsDeviceCapSupported

(IMG_CAP_STREAMING))
{

//Yes, streaming is supported
}

711

Chapter 20

712
SetDeviceProperty

Syntax int SetDeviceProperty (
int nPropId,
int nValue
);

Include File C_PicTool.h

Description Sets a vendor-specific property on a imaging
device.

Parameters

Name:

Description:

nPropId

A vendor-specific value that identifies the
property to set.

Name:

Description:

nValue

The desired value for the property.

Notes Supported properties vary from device to
device. Refer to Appendix A starting on page
1091 for more information on the values for
nPropId and nValue.

Return Values

0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetDeviceProperty

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Error text buffer.
TCHAR szText[500];

//Set the vendor-specific
//property.
if (pid->SetDeviceProperty

(FirstActivePixel, 100) < 0)
{

//Get error text.
pid->GetErrorText (szText, 500);

}

Syntax int GetDeviceProperty (
int nPropId,
int* pnValue
);

Include File C_PicTool.h

Description Returns the value of a vendor-specific
property on an imaging device.

Parameters

Name:

Description:

nPropId

A vendor-specific value that identifies the
property to get.
713

Chapter 20

714
Name:

Description:

nValue

A pointer to a variable in which the value for
the property is returned.

Notes Supported properties vary from device to
device. Refer to Appendix A starting on page
1091 for more information on the values for
nPropId and nValue.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable that receives the
//property value
int nValue;
//Error text buffer.
TCHAR szText[500];

//Get the vendor-specific
//property.
if (pid->GetDeviceProperty

(FirstActivePixel, &nValue) <
0)

{
//Get error text.
pid->GetErrorText (szText, 500);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetInputSourceCount

Syntax int GetInputSourceCount(
int* pnCount
);

Include File C_PicTool.h

Description Returns the number of input sources that are
supported by the current device.

Parameters

Name:

Description:

pnCount

A pointer to the integer variable that receives
the source count. Values range from 1 to n,
where n is the number of input sources
supported by the imaging device.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to the image device
//object.
CcImageDevice *pid;
//Integer to receive source count.
int nCount;
//Holds error text.
TCHAR szText[200];
//Get the number of input sources
//provided by the device
715

Chapter 20

716
SetInputSource

Example (cont.) if (pid->GetInputSourceCount(
&nCount) < 0)

{
//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int SetInputSource(
int nSource
);

Include File C_PicTool.h

Description Sets the input source on the imaging device.

Parameters

Name:

Description:

nSource

The input source. The value can range from 0
to n - 1, where n is the number of input
sources supported by the current device.

Notes The first input source supported by a device is
always zero. Therefore, possible return
channel values for a device that has four input
channels are 0, 1, 2 and 3.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetInputSource

Example The following is a sample code fragment:

//Pointer to the image device
//object.
CcImageDevice *pid;
//Holds the error text
TCHAR szText[200];
//Set the input source to
//source 0.
if (pid->SetInputSource(0)<0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int GetInputSource(
int* pnSource
);

Include File C_PicTool.h

Description Returns the current input source from the
imaging device.

Parameters

Name:

Description:

pnSource

A pointer to an integer variable that receives
the current input source. The value can range
from 0 to n - 1, where n is the number of input
sources supported by the current device.

Notes The first input source supported by a device is
always zero. Therefore, possible return
channel values for a device that has four input
channels are 0, 1, 2 and 3.
717

Chapter 20

718
SetTimeout

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to the image device
//object.
CcImageDevice *pid;
//Variable to receive the input
//source
int nSource
//Holds the error text
TCHAR szText[200];
//Get the input source.
if (pid->GetInputSource(&nSource)

< 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int SetTimeout(
int nTimeOut
);

Include File C_PicTool.h

Description Sets the timeout period for acquire operations.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Parameters

Name:

Description:

nTimeout

The timeout period, in seconds.

Notes This method is available only if the device
supports the IMG_CAP_TIMEOUT capability.

A timeout error is returned if the acquisition
does not complete within the time specified
by this method.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the timeout to 10 seconds.
if (pid->SetTimeout(10) < 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

719

Chapter 20

720
GetTimeout

Syntax int GetTimeout(
int *pnTimeOut
);

Include File C_PicTool.h

Description Returns the current timeout period.

Parameters

Name:

Description:

pnTimeout

A pointer to an integer that receives the
timeout value, in seconds.

Notes This method is available only if the device
supports the IMG_CAP_TIMEOUT capability.

A timeout error is returned if the acquisition
does not complete within the time specified
by this method.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Get the timeout value.
if (pid->GetTimeout(&nTimeout) <

0)

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

SetImageScale

Example (cont.) {
//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int SetImageScale(
int nHorzScale,
int nVertScale
);

Include File C_PicTool.h

Description Sets the current horizontal and vertical scale
factors for the output image.

Parameters

Name:

Description:

nHorzScale

An integer that specifies the horizontal scale
factor. Values range from 0 to 100 percent.

Name:

Description:

nVertScale

An integer that specifies the vertical scale
factor. Values range from 0 to 100 percent.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.
721

Chapter 20

722
GetImageScale

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the horizontal and vertical
//scale factors to 50%.
if (pid->SetImageScale(50,50) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageScale(
int *pnHorzScale,
int *pnVertScale
);

Include File C_PicTool.h

Description Returns the current horizontal and vertical
scale factors for the output image.

Parameters

Name:

Description:

pnHorzScale

A pointer to an integer variable that receives
the current horizontal scale factor. Values for
the horizontal scale factor range from 0 to 100
percent.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Name:

Description:

pnVertScale

A pointer to an integer variable that receives
the current vertical scale factor. Values for the
vertical scale factor range from 0 to 100
percent.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the scale
// values.
int nHorzScale, nVertScale;
//Holds error text.
TCHAR szText[200];
//Get the horizontal and vertical
//scale factors.
if (pid->GetImageScale

(&nHorzScale, &nVertScale) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

723

Chapter 20

724
SetHorzImageScale

Syntax int SetHorzImageScale(
int nHorzScale
);

Include File C_PicTool.h

Description Sets the current horizontal scale factor for the
output image.

Parameters

Name:

Description:

nHorzScale

An integer that specifies the horizontal scale
factor. Values range from 0 to 100 percent.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the horizontal scale factor
//to 50%.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetHorzImageScale

Example (cont.) if (pid->SetHorzImageScale(50) <
0)

{
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetHorzImageScale(
int *pnHorzScale
);

Include File C_PicTool.h

Description Returns the current horizontal scale factor for
the output image.

Parameters

Name:

Description:

pnHorzScale

A pointer to an integer variable that receives
the current horizontal scale factor. Values for
the horizontal scale factor range from 0 to 100
percent.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.
725

Chapter 20

726
SetVertImageScale

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the
//horizontal scale value.
int nHorzScale;
//Holds error text.
TCHAR szText[200];
//Get the horizontal scale factor
if (pid->GetHorzImageScale

(&nHorzScale) < 0)
{

//Get error text.
//pid -> GetErrorText(szText,
200);

}

Syntax int SetVertImageScale(
int nVertScale
);

Include File C_PicTool.h

Description Sets the current vertical scale factor for the
output image.

Parameters

Name:

Description:

nVertScale

An integer that specifies the vertical scale
factor. Values range from 0 to 100 percent.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetVertImageScale

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the vertical scale factor to
//50%.
if (pid->SetVertImageScale (50) <

0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetVertImageScale(
int *pnVertScale
);

Include File C_PicTool.h

Description Returns the current vertical scale factor for the
output image.
727

Chapter 20

728
Parameters

Name:

Description:

pnVertScale

A pointer to an integer variable that receives
the current vertical scale factor. Values for the
vertical scale factor range from 0 to 100
percent.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the vertical
//scale value.
int nVertScale;
//Holds error text.
TCHAR szText[200];
//Get the vertical scale factor
if (pid->GetVertImageScale(

&nVertScale) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetScaledImageDims

Syntax int GetScaledImageDims(
int* pnWidth,
int* pnHeight
);

Include File C_PicTool.h

Description Returns the dimensions (width and height) of
the output image after the current horizontal
and vertical scale factors have been applied.

Parameters

Name:

Description:

pnWidth

A pointer to an integer variable that receives
the scaled width of the image.

Name:

Description:

pnHeight

A pointer to an integer variable that receives
the scaled height of the image.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.
729

Chapter 20

730
GetScaledImageWidth

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variables to receive scaled
//width and height
int nWidth, nHeight;
//Holds error text.
TCHAR szText[200];
//Get the scaled image dimensions
if (pid->GetScaledImageDims(

&nWidth, &nHeight) < 0)
{

//Get error text.
//pid -> GetErrorText(szText,
200);

}

Syntax int GetScaledImageWidth(
int *pnWidth
);

Include File C_PicTool.h

Description Returns the width of the image after the
current horizontal scale factor has been
applied

Parameters

Name:

Description:

pnWidth

A pointer to an integer variable that receives
the scaled image width.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetScaledImageHeight

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive scaled
//width.
int nWidth;
//Holds error text.
TCHAR szText[200];
//Get the scaled image width
if (pid->GetScaledImageWidth(

&nWidth) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetScaledImageHeight(
int *pnHeight
);

Include File C_PicTool.h
731

Chapter 20

732
Description Returns the height of the image after the
current vertical scale factor has been applied.

Parameters

Name:

Description:

pnHeight

A pointer to an integer variable that receives
the scaled image height.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive scaled
//image height.
int nHeight;
//Holds error text.
TCHAR szText[200];
//Get the scaled height
if (pid->GetScaledImageHeight(

&nHeight) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageScaleLimits

Syntax int GetImageScaleLimits(
PDL_IMAGE_SCALE_LIMITS *pLimits
);

Include File C_PicTool.h

Description Returns the operating limits on image scaling.

Parameters

Name:

Description:

pLimits

A pointer to the
PDL_IMAGE_SCALE_LIMITS structure that
receives the scaling limits.

Notes This method is available only if the device
supports the IMG_CAP_IMAGESCALE
capability.

This PDL_IMAGE_SCALE_LIMITS structure
describes the limits on image scale for a given
imaging device. The
PDL_IMAGE_SCALE_LIMITS structure is
defined as follows:

typedef struct
PDL_IMAGE_SCALE_LIMITS
{
// Minimum horizontal scale.
int nMinHScale;
// Maximum horizontal scale.
int nMaxHScale;
// Step by which to increment.
int nIncHScale;
// Default horizontal scale.
int nDefHScale;
// Minimum vertical scale.
int nMinVScale;
733

Chapter 20

734
Notes (cont.) // Maximum vertical scale.
int nMaxVScale;
// Step by which to increment.
int nIncVScale;
// Default vertical scale.
int nDefVScale;
PDL_IMAGE_SCALE_LIMITS;

The nMinHScale and nMaxHScale members
hold the minimum and maximum allowable
horizontal scale factors for the imaging
device. nIncHScale specifies the amount by
which the horizontal scale factor can be
incremented and decremented. nDefHScale
always holds the default horizontal scale
factor for the device. nMinVScale, nMaxVScale,
nIncVScale and nDefVScalet describe the limits
on vertical image scale.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the scaling
//limits.
PDL_IMAGE_SCALE_LIMITS Limits;
//Holds error text.
TCHAR szText[200];
//Get the limits on image scaling

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

SetImageDims

Example (cont.) if (pid->GetImageScaleLimits(
&Limits) < 0)

{
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int SetImageDims(
int nWidth,
int nHeight
);

Include File C_PicTool.h

Description Sets the current width and height of the
output image.

Parameters

Name:

Description:

nWidth

An integer that specifies the width of the
image.

Name:

Description:

nHeight

An integer that specifies the height of the
image.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.
735

Chapter 20

736
GetImageDims

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the output image size to 640
//x 480 pixels.
if (pid->SetImageDims(640, 480) <

0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageDims(
int *pnWidth,
int *pnHeight
);

Include File C_PicTool.h

Description Returns the current width and height of the
output image.

Parameters

Name:

Description:

pnWidth

A pointer to an integer variable that receives
the current width of the image.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Name:

Description:

pnHeight

A pointer to an integer variable that receives
the current height of the image.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variables to receive the image
//width and height
int nWidth, nHeight;
//Holds error text.
TCHAR szText[200];
//Get the current image
//dimensions.
if (pid->GetImageDims (&nWidth,

&nHeight) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

737

Chapter 20

738
SetImageWidth

Syntax int SetImageWidth(
int nWidth
);

Include File C_PicTool.h

Description Sets the width of the output image.

Parameters

Name:

Description:

nWidth

An integer that specifies the image width.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the output image width to
//640 pixels.
if (pid->SetImageWidth(640) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageWidth

Syntax int GetImageWidth(
int *pnWidth
);

Include File C_PicTool.h

Description Returns the current width of the output
image.

Parameters

Name:

Description:

pnWidth

A pointer to an integer variable that receives
the current image width.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the image
//width
int nWidth;
//Holds error text.
TCHAR szText[200];
//Get the current image width.
if (pid->GetImageWidth (&nWidth)

< 0)
739

Chapter 20

740
SetImageHeight

Example (cont.) {
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int SetImageHeight(
int nHeight
);

Include File C_PicTool.h

Description Sets the height of the output image.

Parameters

Name:

Description:

nHeight

An integer that specifies the image height.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageHeight

Example (cont.) //Set the output image height to
//480 pixels.
if (pid->SetImageHeight (480) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageHeight(
int *pnHeight
);

Include File C_PicTool.h

Description Returns the current height of the output
image.

Parameters

Name:

Description:

pnHeight

A pointer to an integer variable that receives
the current image height.

Notes None

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.
741

Chapter 20

742
GetImageDimsLimits

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the image
//height
int nHeight;
//Holds error text.
TCHAR szText[200];
//Get the current image height.
if (pid->GetImageHeight (&nHeight)

< 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageDimsLimits (
PDL_IMAGE_DIMS_LIMITS* pLimits
);

Include File C_PicTool.h

Description Returns the operating limits for the image
dimensions.

Parameters

Name:

Description:

pLimits

A pointer to the PDL_IMAGE_DIMS_LIMITS
structure that receives the image height,
width, and type.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Notes This PDL_IMAGE_DIMS_LIMITS structure
describes the limits on image dimensions for a
given imaging device. The
PDL_IMAGE_DIMS_LIMITS structure is
defined as follows:

typedef struct
PDL_IMAGE_DIMS_LIMITS

{
// Minimum image width.
int nMinWidth;
// Maximum image width.
int nMaxWidth;
//Width increment value.
int nIncWidth;
// Default image width.
int nDefWidth;
// Minimum image height.
int nMinHeight;
// Maximum image height.
int nMaxHeight;
// Height increment value.
int nIncHeight;
// Default image height.
int nDefHeight;

} PDL_IMAGE_DIMS_LIMITS;

The nMinWidth and nMaxWidth members
hold the minimum and maximum allowable
width (in pixels) of images produced by the
device. nIncWidth specifies the amount by
which the image width can be incremented
and decremented. nDefWidth always holds the
default image width for the device.
nMinHeight, nMaxHeight, nIncHeight and
nDefHeight describe the limits on image
height.
743

Chapter 20

744
SetImageType

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the
//dimension limits
PDL_IMAGE_DIMS_LIMITS Limits;
//Holds error text.
TCHAR szText[200];
//Get the limits on image
//dimensions.
if (pid->GetImageDimsLimits(

&Limits) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int SetImageType(
int nImageType
);

Include File C_PicTool.h

Description Sets the type of output image to use.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Parameters

Name:

Description:

nImageType

An integer that specifies the type of output
image. Possible values are as follows:

• IMAGE_TYPE_08BIT_GS - An 8-bit
grayscale image.

• IMAGE_TYPE_32BIT_GS - A 32-bit
grayscale image.

• IMAGE_TYPE_16BIT_GS - A 16-bit
grayscale image.

• IMAGE_TYPE_FLOAT_GS - A
floating-point grayscale image.

• IMAGE_TYPE_24BIT_RGB - A 24-bit RGB
color image.

• IMAGE_TYPE_BINARY - A binary image
(one byte per pixel; pixel values can be 0 or
1).

• IMAGE_TYPE_24BIT_HSL - A 24-bit HSL
color image.

Notes This method is provided for backward
compatibility with existing APIs.

An imaging device may support only a subset
of the image types listed.
745

Chapter 20

746
Notes (cont.) The image type flags used with
GetImageType, described on page 747, and
SetImageType, described on page 744, have
different numeric values than the flags used
with GetImageTypeEx, described on page
751, and SetImageTypeEx, described on page
749. Thus, the flags for the nImageType
parameter should be used with the
GetImageType and SetImageType methods
only.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the current image to 8-bit
//grayscale.
if (pid->SetImageType(

IMAGE_TYPE_08BIT_GS) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageType

Syntax int GetImageType(
int *pnImageType
);

Include File C_PicTool.h

Description Returns the current output image type.

Parameters

Name:

Description:

pnImageType

A pointer to the integer variable that receives
the image type. Possible values for image type
are as follows:

• IMAGE_TYPE_08BIT_GS - An 8-bit
grayscale image.

• IMAGE_TYPE_32BIT_GS - A 32-bit
grayscale image.

• IMAGE_TYPE_16BIT_GS - A 16-bit
grayscale image.

• IMAGE_TYPE_FLOAT_GS - A
floating-point grayscale image.

• IMAGE_TYPE_24BIT_RGB - A 24-bit RGB
color image.

• IMAGE_TYPE_BINARY - A binary image
(one byte per pixel; pixel values can be 0 or
1).

• IMAGE_TYPE_24BIT_HSL - A 24-bit HSL
color image.

Notes This method is provided for backward
compatibility with existing APIs.
747

Chapter 20

748
Notes (cont.) An imaging device may support only a subset
of the image types listed.

The image type flags used with
GetImageType, described on page 747, and
SetImageType, described on page 744, have
different numeric values than the flags used
with GetImageTypeEx, described on page
751, and SetImageTypeEx, described on page
749. Thus, the flags for the pnImageType
parameter should be used with the
GetImageType and SetImageType methods
only.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the image
//type
int nImageType;
//Holds error text.
TCHAR szText[200];
//Get the current image type.
if (pid->GetImageType

(&nImageType) < 0)

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

SetImageTypeEx

Example (cont.) {
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int SetImageTypeEx(
int nImageTypeEx
);

Include File C_PicTool.h

Description Specifies the type of output image to use.

Parameters

Name:

Description:

nImageTypeEx

An integer that specifies the type of output
image. Possible values are as follows:

• IMG_TYPE_08BIT_GS - An 8-bit grayscale
image.

• IMG_TYPE_32BIT_GS - A 32-bit grayscale
image.

• IMG_TYPE_16BIT_GS - A 16-bit grayscale
image.

• IMG_TYPE_FLOAT_GS - A floating-point
grayscale image.

• IMG_TYPE_24BIT_RGB - A 24-bit RGB
color image.

• IMG_TYPE_BINARY - A binary image
(one byte per pixel; pixel values can be 0 or
1).
749

Chapter 20

750
Description (cont.): • IMAGE_TYPE_24BIT_HSL - A 24-bit HSL
color image.

Notes An imaging device may support only a subset
of the image types listed.

The image type flags used with
GetImageType, described on page 747, and
SetImageType, described on page 744, have
different numeric values than the flags used
with GetImageTypeEx, described on page
751, and SetImageTypeEx, described on page
749. Thus, the flags for the nImageTypeEx
parameter should be used with the
GetImageTypeEx and SetImageTypeEx
methods only.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Set the current image to 8-bit
//grayscale.
if (pid->SetImageTypeEx

(IMG_TYPE_08BIT_GS) < 0)

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageTypeEx

Example (cont.) {
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageTypeEx(
int *pnImageTypeEx
);

Include File C_PicTool.h

Description Returns the current output image type.

Parameters

Name:

Description:

pnImageTypeEx

A pointer to an integer variable that receives
the current image type. Possible values for
image type are as follows:

• IMG_TYPE_08BIT_GS - An 8-bit grayscale
image.

• IMG_TYPE_32BIT_GS - A 32-bit grayscale
image.

• IMG_TYPE_16BIT_GS - A 16-bit grayscale
image.

• IMG_TYPE_FLOAT_GS - A floating-point
grayscale image.

• IMG_TYPE_24BIT_RGB - A 24-bit RGB
color image.
751

Chapter 20

752
Description (cont.): • IMG_TYPE_BINARY - A binary image
(one byte per pixel; pixel values can be 0 or
1).

• IMG_TYPE_24BIT_HSL - A 24-bit HSL
color image.

Notes An imaging device may support only a subset
of the image types listed.

The image type flags used with
GetImageType, described on page 747, and
SetImageType, described on page 744, have
different numeric values than the flags used
with GetImageTypeEx, described on page
751, and SetImageTypeEx, described on page
749. Thus, the flags for the pnImageTypeEx
parameter should be used with the
GetImageTypeEx and SetImageTypeEx
methods only.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive the image
//type
int nImageTypeEx;
//Holds error text.
TCHAR szText[200];
//Get the current image type.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetImageTypeLimits

Example (cont.) if (pid->GetImageTypeEx (
&nImageTypeEx) < 0)

{
//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetImageTypeLimits(
PDL_IMAGE_TYPE_LIMITS* pLimits
);

Include File C_PicTool.h

Description Returns the limits on the image types
supported by the device.

Parameters

Name:

Description:

pLimits

A pointer to the PDL_IMAGE_TYPE_LIMITS
structure that receives the image type limits.

Notes This PDL_IMAGE_TYPE_LIMITS structure
describes the image types or formats that are
supported by a given imaging device. The
PDL_IMAGE_SCALE_LIMITS structure is
defined as follows:

typedef struct
PDL_IMAGE_TYPE_LIMITS
{
// Holds supported image types.
int nImgTypes;
753

Chapter 20

754
Notes (cont.) // Holds default image type.
int nDefType;
} PDL_IMAGE_TYPE_LIMITS;

nImgTypes is a bitfield that contains one or
more of the following image type flags:

• IMG_TYPE_08BIT_GS − 8-bit grayscale.

• IMG_TYPE_16BIT_GS − 16-bit grayscale.

• IMG_TYPE_32BIT_GS − 32-bit grayscale.

• IMG_TYPE_FLOAT_GS − Floating-point
grayscale.

• IMG_TYPE_24BIT_RGB − 24-bit RGB.

• IMG_TYPE_24BIT_HSL − 24-bit HSL.

• IMG_TYPE_BINARY − Binary image.

nDefType holds the default image type for the
device.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Variable to receive limits on
//the image type
PDL_IMAGE_TYPE_LIMITS Limits;
//Holds error text.
TCHAR szText[200];

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetCompatibleImage

Example (cont.) //Get the limits on image type.
if (pid->GetImageTypeLimits(

&Limits) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int GetCompatibleImage(
CcImage **ppImage
);

Include File C_PicTool.h

Description Returns an image object that is compatible
with the current output format (image type,
width, and height) of the imaging device.

Parameters

Name:

Description:

ppImage

A pointer to a pointer to a CcImage object that
will contain the newly created image object.

Notes You can use the returned image object in
subsequent calls to AcquireImage, described
on page 765.

Make sure that you free all image objects
obtained through calls to this method.
755

Chapter 20

756
Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Pointer to receive the image
//object.
CcImage *pImage;
//Holds error text.
TCHAR szText[200];
//Get an image object that is
//compatible with the current
//image output configuration of
//the device.
if (pid->GetCompatibleImage(

&pImage) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}
//Do something with the image and
//free when done
delete pImage;

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

SetImageAverage

Syntax int SetImageAverage(
int nImageCount
);

Include File C_PicTool.h

Description Specifies the number of images that you want
to acquire from the device and average when
you call AcquireImage.

Parameters

Name:

Description:

nImageCount

The number of images that you want to
acquire from the device and average. By
default, a single image is acquired from the
device.

Notes AcquireImage, described on page 765, always
returns the average of the acquired images in
a single image object.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Each time AcquireImage is
//called, acquire four images,
757

Chapter 20

758
EnableTimeStamping

Example (cont.) //average them, and return
//the result.
if (pid->SetImageAverage(4) < 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax int EnableTimeStamping(
BOOL bEnable
);

Include File C_PicTool.h

Description Enables or disables time stamping of images.

Parameters

Name:

Description:

bEnable

Specifies whether to enable or disable time
stamping of images. If TRUE, time stamping
is enabled. If FALSE, time stamping is
disabled.

Notes When time stamping is enabled, a time stamp
is added to the lower-left corner of all images
that are acquired from the device. When time
stamping is disabled, no time stamp is added.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

IsTimeStampingEnabled

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Enable time stamping on the
//device.
if (pid->EnableTimeStamping (TRUE)

< 0)
{

//Get error text.
pid -> GetErrorText(szText,
200);

}

Syntax BOOL IsTimeStampingEnabled();

Include File C_PicTool.h

Description Determines whether time stamping is
currently enabled on the device.

Parameters None

Notes None

Return Values

TRUE Time stamping is currently enabled.

FALSE Time stamping is not currently enabled.
759

Chapter 20

760
StartStreaming

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Is time stamping enabled?
if (pid->IsTimeStampingEnabled())
{

//Yes, time stamping is enabled.
}
else
{

//No, time stamping is disabled.
}

Syntax int StartStreaming();

Include File C_PicTool.h

Description Starts streaming on the device. Images are
continuously streamed as they become
available.

Parameters None

Notes This method is available only if the device
supports the IMG_CAP_STREAMING
capability. For some imaging devices, the use
of streaming can considerably increase the
rate at which images are acquired.

Once streaming has been started, a program
must still call AcquireImage, described on
page 765, to obtain images from the device.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

StopStreaming

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Does the device support
//streaming?
if (pid->IsDeviceCapSupported(

IMG_CAP_STREAMING))
{

//Yes, streaming is supported so
//start it.
if (pid->StartStreaming() < 0)
{

//Get error text.
pid->GetErrorText(szText,

200);
}

}

Syntax int StopStreaming();

Include File C_PicTool.h

Description Stops streaming on the device.

Parameters None
761

Chapter 20

762
Notes This method is available only if the device
supports the IMG_CAP_STREAMING
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Does the device support
//streaming?
if (pid->IsDeviceCapSupported(

IMG_CAP_STREAMING))
{

//Yes, streaming is supported,
//but is streaming already in
//progress?
if (pid->IsStreamingInProgress()
< 0)

{
//Yes, it is, so stop it.
if (pid->StopStreaming() < 0)
{

//Get error text.
pid->GetErrorText(szText,

200);
}

}
}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

WaitForImage

Syntax int WaitForImage();

Include File C_PicTool.h

Description Waits for an image to become available when
the device is running in streaming mode.

Parameters None

Notes This method is available only if the device
supports the IMG_CAP_STREAMING
capability.

Streaming must be running before you can
call this method.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Start streaming
if (pid->StartStreaming())
{

//Get error text.
pid->GetErrorText(szText, 200);

}
//Wait for an image to become
//available?
763

Chapter 20

764
IsStreamingInProgress

Example (cont.) if (pid->WaitForImage())
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax BOOL IsStreamingInProgress();

Include File C_PicTool.h

Description Returns whether streaming is currently in
progress on the device.

Parameters None

Notes None

Return Values

TRUE Streaming is currently in progress on the
device.

FALSE Streaming is currently not in progress on the
device.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Is streaming in progress?
if (pid->IsStreamingInProgress())
{

//Yes, streaming is in progress.
}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

AcquireImage

Example (cont.) else
{

//No, streaming is not in
//progress.

}

Syntax int AcquireImage(
CcImage *pImage
);

Include File C_PicTool.h

Description Acquires an image from the device and
returns it in the supplied image object.

Parameters

Name:

Description:

pImage

A pointer to an image object that was
previously obtained through the
GetCompatibleImage method, described on
page 755.

Notes A program can obtain an image object for use
with AcquireImage, described on page 765,
by calling GetCompatibleImage.
GetCompatibleImage, described on page 755,
retrieves an image object that is compatible
with the output configuration (image type,
width, and height) of the device.
765

Chapter 20

766
Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Pointer that receives image
//object.
CcImage *pImage;
//Holds error text.
TCHAR szText[200];
//Get a compatible image object.
if (pid->GetCompatibleImage(

&pImage) < 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}
//Acquire an image from the
//device
if (pid->AcquireImage(pImage) < 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}
//Do something with the image and
//free when done.
delete pImage;

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

TimedAcquireToAVI

Syntax int TimedAcquireToAVI(
CcAVI pAVI,
int nImageCount,
int nTimeDelay
);

Include File C_PicTool.h

Description Acquires one or more images to an AVI file
with an optional delay between consecutive
images.

Parameters

Name:

Description:

pAVI

A pointer to an object of type CcAVI.

Name:

Description:

nImageCount

The number of images that you want to
acquire to the AVI file. The value must be
greater than or equal to one.

Name:

Description:

nTimeDelay

The delay between images, in milliseconds,
that is used when generating the AVI file. This
value must be greater or equal to zero.

Notes Before calling this method, you must use
CcAVI::Create to initialize a CcAVI object and
create a new AVI file that is compatible with
the current image output format (image type
and dimensions) of the device.
767

Chapter 20

768
Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//AVI object.
CcAVI Avi;
//Holds image type.
int nImageType;
//Holds image width and height.
int nWidth, nHeight;
//Holds error text.
TCHAR szText[200];
//Get the output image type.
if (pid->GetImageType(&nImageType)

< 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}
//Get the image dimensions
if (pid->GetImageDims(&nWidth,

&nHeight) < 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

TimedAcquireToDisc

Example (cont.) //Create an AVI object that is
//compatible with the output
//configuration of the device.
AVI.Create ("C:\\AviFile.avi",

nImageType, nWidth, nHeight);
//Acquire 40 images to the AVI
//file
if (pid->TimedAcquireToAvi(&Avi,

40, 0) < 0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int TimedAcquireToDisc(
LPCSTR szDir,
LPCSTR szBaseFileName,
int nImageCount,
int nCountStart,
int nTimeDelay
);

Include File C_PicTool.h

Description Acquires one or more images to bitmap files.

Parameters

Name:

Description:

szDir

A NULL-terminated constant string that
specifies the directory in which you want to
place the generated bitmap files.
769

Chapter 20

770
Name:

Description:

szBaseFileName

A NULL-terminated constant string that
specifies the base file name to use for all
generated bitmap files.

Name:

Description:

nImageCount

The number of images that you want to
acquire and write to disk. The value must be
greater than or equal to one.

Name:

Description:

nCountStart

The first counter number that you want to
append to the base file name when you start
generating the bitmap files.

Name:

Description:

nTimeDelay

The delay between images, in milliseconds,
used when generating the bitmap files. The
value must be greater than or equal to zero.

Notes Bitmap files generated by this method have
names of the form BaseFileName(n), where
BaseFileName is the base file name for all
bitmap files and n is a number that is
appended to the end of the base file name to
ensure uniqueness. For example, if
nCountStart = 4, nImageCount = 4, and
szBaseFileName = “MyBitmap,” the tool
captures four images and saves them as
MyBitmap4.bmp, MyBitmap5.bmp,
MyBitmap6.bmp, and MyBitmap7.bmp.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

TimedAcquireToMemory

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Acquire 40 images to disk.
if (pid->TimedAcquireToDisc(

"C:\Temp","MyBitmap",40,0,0)
< 0)

{
//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int TimedAcquireToMemory(
LPCSTR szBaseImageName,
int nImageCount,
int nCountStart,
int nTimeDelay,
CcList *pImageList
);

Include File C_PicTool.h

Description Acquires one or more images to image objects
in memory.
771

Chapter 20

772
Parameters

Name:

Description:

szBaseImageName

A NULL-terminated constant string that
specifies the base name for all images
generated by this method. The value must not
be NULL.

Name:

Description:

nImageCount

The number of images that you want to
acquire from the device. This value must be
greater than or equal to one. The maximum
value is determined by the amount of
memory available in your system.

Name:

Description:

nCountStart

The first counter number that you want to
append to the base file name when you start
generating the bitmap files. The value must be
greater than or equal to zero.

Name:

Description:

nTimeDelay

The delay between images, in milliseconds,
used when generating the bitmap files. The
value must be greater than or equal to zero.

Name:

Description:

pImageList

A pointer to a CcList object that receives the
image objects that are generated by this
method. Any existing objects in the specified
list are deleted. The value must not be NULL.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Notes Images generated by this method have names
of the form BaseFileName(n), where
BaseFileName is the base file name for all
bitmap files and n is a number that is
appended to the end of the base file name to
ensure uniqueness. For example, if
nCountStart = 4, nImageCount = 4, and
szBaseFileName = “MyImage,” the tool
captures four images and saves them as
MyImage4, MyImage5, MyImage6, and
MyImage7.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//List to hold acquired images.
CcList *pList;
//Holds error text.
TCHAR szText[200];
//Acquire 40 images to disk at
//100 ms intervals. Images will be
//named Image0, Image1, Image2,
//and so on.
if (pid->TimedAcquireToMemory(

"Image", 40, 0, 100, pList) < 0
)

773

Chapter 20

774
StartLiveVideo

Example (cont.) {
//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int StartLiveVideo(
HWND hWindow);

Include File C_PicTool.h

Description Starts live video in the specified window.

Parameters

Name:

Description:

hWindow

A handle to the window in which to display
the live video. The value cannot be NULL.

Notes Live video provides an application with the
ability to view a live video image for the
purpose of focusing cameras, and so on.

This method is available only if the device
indicates support for the
IMG_CAP_LIVEVIDEO capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

StopLiveVideo

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Window to display live video.
HWND hWindow;
//Holds error text.
TCHAR szText[200];
//Fill in hWindow with a valid
//window handle
hWindow = <some window handle>;
//Start live video
if (pid->StartLiveVideo(hWindow) <

0)
{

//Get error text.
pid->GetErrorText(szText, 200);

}

Syntax int StopLiveVideo();

Include File C_PicTool.h

Description Stops live video if it is currently running.

Parameters None

Notes This method is available only if the device
indicates support for the
IMG_CAP_LIVEVIDEO capability.
775

Chapter 20

776
IsLiveVideoRunning

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//See if live video is currently
//running
if (pid->IsLiveVideoRunning())
{

//Stop live video.
if (pid->StopLiveVideo() < 0)
{

//Get error text.
pid->GetErrorText(szText,
200);

}
}

Syntax BOOL IsLiveVideoRunning();

Include File C_PicTool.h

Description Determines whether live video is currently
running.

Parameters None

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

SetDeviceConfig

Notes None

Return Values

TRUE Live video is currently running.

FALSE Live video is not currently running.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Is live video currently running
if (pid->IsLiveVideoRunning())
{

//Yes, live video is running.
}
else
{

//No, live video is not
//currently running.

);

Syntax int SetDeviceConfig(
LPSTREAM pStream
);

Include File C_PicTool.h

Description Restores the device configuration for the
currently selected video input source
777

Chapter 20

778
Parameters

Name:

Description:

pStream

A pointer to a STREAM object that contains
the device configuration to restore.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Stream object for saving
//configurations.
STREAM *pStream;
//Holds the video input source
//count.
int nCount;
//Initialize a stream that
//contains the device
//configuration
//Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Example (cont.) {
//Yes. Does the device support a
//separate configuration for
//each source?
if (pid->IsDeviceCapSupported(
IMG_CAP_CFGPERSOURCE))

{
//Yes. Get the number of
//sources.
if (pid->GetInputSourceCount

(&nCount) < 0)
{

//Handle error.
}

//Restore the device
//configuration for each source.
for (int i = 0; i < nCount; i++)
{

//Set the input source.
if (pid->SetInputSource(i)< 0)
{

//Handle error.
}
//Restore device config for
//current source.
if (pid->SetDeviceConfig(

pStream) < 0)
{

//Handle error.
}

}
}
else

{
//No. Restore the
//configuration for the
//current source since
779

Chapter 20

780
GetDeviceConfig

Example (cont.) //the same configuration is
//shared by all sources.
if (pid->SetDeviceConfig(
pStream) < 0)

{
//Handle error.

}
}

}
//Dispose of the stream object.

Syntax int GetDeviceConfig(
LPSTREAM pStream
);

Include File C_PicTool.h

Description Returns the device configuration for the
currently selected video input source.

Parameters

Name:

Description:

pStream

A pointer to a STREAM object that receives
the device configuration.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Stream object for saving
//configurations.
STREAM *pStream;
//Holds the video input source
//count.
int nCount;
//Create a stream for saving the
//device configuration
//Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))
{

//Yes. Does the device support a
//separate configuration
//for each source?
if (pid->IsDeviceCapSupported(
IMG_CAP_CFGPERSOURCE))

{
//Yes. Get the number of
//sources.
if (pid->GetInputSourceCount(

&nCount) < 0)
{

//Handle error.
}
//Save the device
//configuration for each
//source.
for (int i = 0; i < nCount;

i++)
781

Chapter 20

782
Example (cont.) {
//Set the input source.
if (pid->SetInputSource

(i) < 0)
{

//Handle error.
}
//Save device config for
//current source.
if (pid->GetDeviceConfig(

pStream) < 0)
{

//Handle error.
}

}
}
else
{
//No. Save the configuration
//for the current source
//since the same
//configuration is shared
//by all sources.
if (pid->GetDeviceConfig(
pStream) < 0)
{

//Handle error.
}

}
}
//Do something with the
//configuration data in the
//stream and dispose of the
//stream object.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

LoadDeviceConfig

Syntax int LoadDeviceConfig(
LPCSTR szFileName
);

Include File C_PicTool.h

Description Loads the device configuration for the current
input source from a file.

Parameters

Name:

Description:

szFileName

A NULL-terminated string that identifies the
configuration file to load.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Holds configuration file
//extension.
TCHAR szExt[20];
//Holds configuration file name.
TCHAR szFileName[100];
783

Chapter 20

784
SaveDeviceConfig

Example (cont.) //Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))
{

//Get the configuration file
//extension.
if (pid->GetDeviceConfigFileExt
(szExt, 20) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText, 200)

}
//Create configuration file name
wsprintf(szFileName, "%s.%s",
"MyConfig", szExt);

//Load the device configuration
//for the current source.
if (pid->LoadDeviceConfig(
szFileName) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText, 200)

}
}

Syntax int SaveDeviceConfig(
LPCSTR szFileName
);

Include File C_PicTool.h

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Description Saves the device configuration for the current
input source to a file.

Parameters

Name:

Description:

szFileName

A NULL-terminated string that identifies the
configuration file to create.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

A program should call
GetDeviceConfigFileExt, described on page
787, to retrieve the three-character
configuration file extension that is associated
with the device, and use this extension for all
configuration files that are generated. This
allows device configuration files to be
uniquely identified.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Holds configuration file
//extension.
TCHAR szExt[20];
785

Chapter 20

786
Example (cont.) //Holds configuration file name.
TCHAR szFileName[100];
//Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))
{

//Get the configuration file
//extension.
if (pid->GetDeviceConfigFileExt(
szExt, 20) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText,200)

}
//Create configuration file name
wsprintf(szFileName, "%s.%s",
"MyConfig", szExt);

//Save the device configuration
//for the current source.
if (pid->SaveDeviceConfig(
szFileName) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText,200)

}
}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetDeviceConfigFileExt

Syntax int GetDeviceConfigFileExt(
LPSTR szFileExt,
int nBufSize
);

Include File C_PicTool.h

Description Returns the three-character configuration file
extension for the device.

Parameters

Name:

Description:

szFileExt

A character buffer that is large enough to hold
the three-character extension (plus a
NULL-termination character) that is returned
by this method.

Name:

Description:

nBufSize

An integer that specifies the size, in
characters, of the buffer that receives the
device configuration file extension.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

As an example of using this method, assume
that this method returned the characters
“C52” for a DT3152 board. This extension
could then be appended to a base file name to
generate unique file names for the
configuration.
787

Chapter 20

788
Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Holds configuration file
//extension.
TCHAR szExt[20];
//Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))
{

//Get the configuration file
//extension.
if (pid->GetDeviceConfigFileExt(
szExt, 20) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText,200)
}

}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

GetDeviceConfigFileDesc

Syntax int GetDeviceConfigFileDesc(
LPSTR szFileDesc,
int nBufSize
);

Include File C_PicTool.h

Description Returns a short description of the
configuration file for the device.

Parameters

Name:

Description:

szFileDesc

A character buffer that is large enough to hold
the device configuration description that is
returned by this method.

Name:

Description:

nBufSize

An integer that specifies the size, in
characters, of the buffer that receives the
device configuration description.

Notes This method is available only if the device
supports the IMG_CAP_DEVICECONFIG
capability.

The returned string is primarily intended for
use in the Open/Save file dialog boxes. For
example, a call to this method might return
the characters “DT3152 Config Files” for a
DT3152 board.
789

Chapter 20

790
Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Holds configuration file
//description.
TCHAR szDesc[20];
//Does the device support
//configuration persistence?
if (pid->IsDeviceCapSupported(

IMG_CAP_DEVICECONFIG))
{

//Get the configuration file
description.

if
(pid->GetDeviceConfigFileDesc(

szDesc, 20) < 0)
{

//Get error text and handle
//error.
pid->GetErrorText(szText,200)

}
}

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

ShowDeviceConfigDialog

Syntax int ShowDeviceConfigDialog(
HWND hParent
);

Include File C_PicTool.h

Description Displays the configuration dialog box for the
device.

Parameters

Name:

Description:

hParent

A handle to the window that serves as the
parent of the device configuration dialog box.

Notes This method is available only if the device
supports the IMG_CAP_CONFIGDIALOG
capability.

The configuration dialog box allows you to
configure the settings for a device. This dialog
box is device-specific; therefore, different
device or plug-in combinations may have
different option dialog boxes.

Return Values

 0 The method was successful.

< 0 An error occurred. Use GetErrorText,
described on page 792, to return a description
of the error.

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
791

Chapter 20

792
GetErrorText

Example (cont.) //Holds configuration file
//description.
TCHAR szDesc[20];
//Holds error text.
TCHAR szText[200];
//Handle to the window.
HWND hParent;
//Fill in with a valid window
//handle.
HParent = <some window handle>;
//Does the device provide a
//configuration dialog box?
if (pid->IsDeviceCapSupported(

IMG_CAP_CONFIGDIALOG))
{

//Display the dialog box.
if (pid->ShowDeviceConfigDialog(
hParent) < 0)

{
//Get error text and handle
//error.
pid->GetErrorText(szText, 200)
}

}

Syntax void GetErrorText(
LPSTR szErrorText,
int nBufSize
);

Include File C_PicTool.h

Description Returns a description of the last error that
occurred.

Using the Picture Tool API

2

2

2

2

2

2

20

20

2

Parameters

Name:

Description:

szErrorText

A character buffer that receives the text
associated with the last error generated. This
value must not be NULL.

Name:

Description:

nBufSize

The size of the supplied character buffer.This
value must not be zero.

Notes None

Return Values None

Example The following is a sample code fragment:

//Pointer to an image device
//object.
CcImageDevice *pid;
//Holds error text.
TCHAR szText[200];
//Get error text and handle error.
pid->GetErrorText(szText, 200)
793

Chapter 20

794

21
Using the Pixel Change

Tool API
Overview of the Pixel Change Tool API 796

CcChange Methods . 797

Example Program Using the Pixel Change Tool API 805
795

Chapter 21

796
Overview of the Pixel Change Tool API
The API for the Pixel Change tool has one object only: the CcChange
class. This tool sets all pixels inside the given ROI (CcRoiBase DT
Vision Foundry object) to the specified value for the given image
(CcImage DT Vision Foundry object).

Note: Currently, this tool does not support 24-bit HSL color images.

The CcChange class uses a standard constructor and destructor and
the class methods listed in Table 38.

Table 38: CcChange Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcChange(void);

~CcChange(void);

CcChange Class
Methods

int Change (CcImage* CImage,CcRoiBase* CRoi,
 float fNewValue);

int ChangeRGB(Cc24BitRGBImage* CImage,
 CcRoiBase* CRoi,BYTE bRed,BYTE bGreen,BYTE bBlue);

int ChangeOverlay(CcImage* CImage,CcRoiBase* CRoi,
 BYTE bNewValue);

Using the Pixel Change Tool API

21

2

2

2

2

2

2

21

2

CcChange Methods
This section describes each method of the CcChange class in detail.

Change

Syntax int Change(
 CcImage* CImage,
 CcRoiBase* CRoi,
 float fNewValue);

Include File C_Change.h

Description Changes all the pixels inside the ROI to the
specified value in the given image.

Parameters

Name:

Description:

CImage

A pointer to an image that is derived from the
CcImage class on which to perform the pixel
change operation.

Name:

Description:

CRoi

A pointer to the ROI object that defines the
area in which to perform the operation.

Name:

Description:

fNewValue

The new grayscale value for the pixels inside
the ROI. If CImage is a 24-bit RGB image, the
area defined by the ROI is filled with the
following colors: red = fNewValue, green =
fNewValue, and blue = fNewValue.

Return Values

< 0 Method failed.

0 Method was successful.
797

Chapter 21

798
Example //Grayscale image object
CcGrayImage256* pImage;
//Rectangular ROI object
CcRoiRect* pRoi;
//Change tool API object
CcChange API;

//Use structured exception
//handling
_try
{

//Create a new image object.
//Exit on failure.
if (!(pImage =
new CcGrayImage256))
return FALSE;

//Create a new rectangular ROI
//object
if (!(pRoi = new CcRoiRect))

return FALSE;

//Configure ROI coordinates
RECT rcBounds = { 50, 150, 150,
50};

//Set coordinates to ROI object
if (pRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

//Open a 640x480, 8-bit
//grayscale bitmap
if (pImage->OpenBMPFile(
"MyImage.bmp") < 0)
return FALSE;

Using the Pixel Change Tool API

21

2

2

2

2

2

2

21

2

ChangeRGB

Example (cont.) //Change the rectangle to
//grayscale value 128
if (API.Change(pImage, pRoi,
128) < 0)
return FALSE;

}
_finally
{

//Clean up before leaving
if (pImage)
delete pImage;

if (pRoi)
delete pRoi;

}

Syntax int ChangeRGB(
 Cc24BitRGBImage* CImage,
 CcRoiBase* CRoi,
 BYTE bRed,
 BYTE bGreen,
 BYTE bBlue);

Include File C_Change.h

Description Changes all the pixels inside the ROI to the
specified value in the given image.

Parameters

Name:

Description:

CImage

A pointer to the 24-bit RGB image on which to
perform the pixel change operation.
799

Chapter 21

800
Name:

Description:

CRoi

A pointer to the ROI object that defines the
area in which to perform the operation.

Name:

Description:

bRed

The new red value for the RGB pixels in the
ROI area.

Name:

Description:

bGreen

The new green value for the RGB pixels in the
ROI area.

Name:

Description:

bBlue

The new blue value for the RGB pixels in the
ROI area.

Return Values

< 0 Operation failed.

0 Successful.

Example //24-bit RGB image object
Cc24BitRGBImage* pImage;
//Rectangular ROI object
CcRoiRect* pRoi;
//Change tool API object
CcChange API;

//Use structured exception
//handling
_try
{

//Create a new image object.
//Exit on failure.
if (!(pImage =
new Cc24BitRGBImage))
return FALSE;

Using the Pixel Change Tool API

21

2

2

2

2

2

2

21

2

Example (cont.) //Create a new rectangular ROI
//object
if (!(pRoi = new CcRoiRect))

return FALSE;

//Configure ROI coordinates
RECT rcBounds = { 50, 150, 150,
50};

//Set coordinates to ROI object
if (pRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

//Open a 640x480, 24-bit
//RGB bitmap
if (pImage->OpenBMPFile(
"MyImage.bmp")< 0)
return FALSE;

//Change the rectangle to
//bright red
if (API.ChangeRGB(pImage, pRoi,
255, 0, 0) < 0)
return FALSE;

}
_finally
{

//Clean up before leaving
if (pImage)
delete pImage;

if (pRoi)
delete pRoi;

}

801

Chapter 21

802
ChangeOverlay

Syntax int ChangeOverlay(
 CcImage* CImage,
 CcRoiBase* CRoi,
 BYTE bValue);

Include File C_Change.h

Description Changes all the pixels inside the ROI to the
specified value in the given image’s overlay.

Parameters

Name:

Description:

CImage

A pointer to the image on which to perform
the pixel change operation.

Name:

Description:

CRoi

A pointer to the ROI object that defines the
area in which to perform the operation.

Name:

Description:

bValue

The fill color that is used to set all the pixels
inside the specified ROI. The following values
are supported:

• OVERLAY_CLEAR − Clears the overlay.

• OVERLAY_RED − Sets the overlay to a
transparent red.

• OVERLAY_GREEN − Sets the overlay to a
transparent green.

• OVERLAY_BLUE − Sets the overlay to a
transparent blue.

• OVERLAY_YELLOW − Sets the overlay to
a transparent yellow.

Using the Pixel Change Tool API

21

2

2

2

2

2

2

21

2

Description (cont.): • OVERLAY_VIOLET − Sets the overlay to a
transparent violet.

• OVERLAY_CYAN − Sets the overlay to a
transparent cyan.

• OVERLAY_WHITE − Sets the overlay to a
transparent white.

Return Values

< 0 Method failed.

0 Method was successful.

Example //Grayscale image object
CcGrayImage256* pImage;
//Rectangular ROI object
CcRoiRect* pRoi;
//Change tool API object
CcChange API;

//Use structured exception
//handling
_try
{

//Create a new image object.
//Exit on failure.
if (!(pImage =
new CcGrayImage256))
return FALSE;

//Create a new rectangular ROI
//object
if (!(pRoi = new CcRoiRect))

return FALSE;
803

Chapter 21

804
Example (cont.) //Configure ROI coordinates
RECT rcBounds = { 50, 150, 150,
50};

//Set coordinates to ROI object
if (pRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

//Open a 640x480, 8-bit
//grayscale bitmap
if (pImage->OpenBMPFile(
"MyImage.bmp")< 0)
return FALSE;

//Change the rectangle to red
if (API.ChangeOverlay(pImage,
pRoi, OVERLAY_RED) < 0)
return FALSE;

}
_finally
{

//Clean up before leaving
if (pImage)
delete pImage;

if (pRoi)
delete pRoi;

}

Using the Pixel Change Tool API

21

2

2

2

2

2

2

21

2

Example Program Using the Pixel Change
Tool API

This example opens a stored image named image1.bmp from disk as
a 32-bit image, changes a rectangular portion of the image to the
value 55, and then stores the image to disk with the name
output.bmp.

Note: This example is made from code fragments with error
checking removed. In an actual program, you should check return
values and pointers.

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImageInt32* C32BitImage;

//32-bit grayscale Image
CcRoiRect* CRectRoi;

//Where operation will take place
CcChangeCChange;
//Object to perform operation
/*End of Dec Section*/

//Allocate memory for objects
C32BitImage = new CcGrayImageInt32();
CRectRoi = new CcRoiRect();
805

Chapter 21

806
//Initialize ROI
RECT stROI;
stROI.bottom = 50;
stROI.top = 150;
stROI.left = 50;
stROI.right = 150;
CRectRoi->SetRoiImageCord((VOID*)&stROI);

//Open images from disk (or get image data from
//frame grabber)
 C32BitImage->OpenBMPFile(“image1.bmp”);

//Perform change
CChange.Change(C32BitImage,CRectRoi,55);

//Save output to disk
C32BitImage->SaveBMPFile(“output.bmp”);

//Free memory
delete C32BitImage;
delete CRectRoi;
}

22
Using the Polar Unwrap

Tool API
Overview of the Polar Unwrap Tool API 808

CcUnwrapper Methods . 809

Example Program Using the Polar UnwrapTool API 828
807

Chapter 22

808
Overview of the Polar Unwrap Tool API
The API for the Polar Unwrap tool has one object only: the
CcUnwrapper class. This class allows you to transform a section of an
image from polar to rectangular coordinates.

The CcUnwrapper class uses a standard constructor and destructor
and the class methods listed in Table 39.

Table 39: CcUnwrapper Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcUnwrappervoid);

~CcUnwrapper(void);

CcUnwrapper
Class Methods

int SetReferenceAngle(float fRefAngle);

int GetReferenceAngle(float* pfRefAngle);

int SetUnwrapAngle(float fUnwrapAngle);

int GetUnwrapAngle(float* pfUnwrapAngle);

int SetUnwrapDirection(BOOL bClockwise);

int GetUnwrapDirection(BOOL bClockwise);

int SetOutputScaleFactor(float fScalefactor);

int GetOutputScaleFactor(float* pfScalefactor);

int SetInputImage(CcImage* pImage);

int SetInputRoi(CcRoiBase* pRoi);

int SizeOutputImage(CcImage* pOutputImage);

int Unwrap(CcImage* pOutputImage);

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
CcUnwrapper Methods
This section describes each method of the CcUnwrapper class in
detail.

SetReferenceAngle

Syntax int SetReferenceAngle(
float fRefAngle);

Include File C_Unwrapper.h

Description Sets the reference angle for the polar unwrap
operation.

Parameters

Name:

Description:

fRefAngle

The reference angle. Values range from 0° to
360° .

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Error text buffer
TCHAR szText[500];

//Set the reference angle to
//45 degrees
if (Unwrapper.SetReferenceAngle(

45) < 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);
809

Chapter 22

810
GetReferenceAngle

Example (cont.) //Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int GetReferenceAngle(
float* pfRefAngle);

Include File C_Unwrapper.h

Description Returns the current reference angle for the
polar unwrap operation.

Parameters

Name:

Description:

pfRefAngle

A pointer to a variable that contains the
current reference angle.

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Variable to receive the
//reference angle
float fRefAngle;
//Error text buffer
TCHAR szText[500];

//Get the current reference angle
if (Unwrapper.GetReferenceAngle(

&fRefAngle) < 0)

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
SetUnwrapAngle

Example (cont.) {
//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int SetUnwrapAngle(
float fUnwrapAngle);

Include File C_Unwrapper.h

Description Sets the unwrap angle for the polar unwrap
operation.

Parameters

Name:

Description:

fUnwrapAngle

The unwrap angle. Values range from 0° to
720° .

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Error text buffer
TCHAR szText[500];
//Set the unwrap angle to 180
//degrees
if (Unwrapper.SetUnwrapAngle(180)<

0)
811

Chapter 22

812
GetUnwrapAngle

Example (cont.) {
//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int GetUnwrapAngle(
float* pfUnwrapAngle);

Include File C_Unwrapper.h

Description Returns the current unwrap angle for the
polar unwrap operation.

Parameters

Name:

Description:

pfUnwrapAngle

A pointer to a variable that contains the
current unwrap angle.

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Variable to receive the
//unwrap angle
float fUnwrapAngle;
//Error text buffer
TCHAR szText[500];

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
SetUnwrapDirection

Example (cont.) //Get the current unwrap angle
if (Unwrapper.GetUnwrapAngle(

&fUnwrapAngle)< 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int SetUnwrapDirection(
BOOL bClockwise);

Include File C_Unwrapper.h

Description Sets the unwrap direction for the polar
unwrap operation.

Parameters

Name:

Description:

bClockwise

The unwrap direction. If TRUE, all unwrap
operations are performed in the clockwise
(negative angular) direction. If FALSE, all
unwrap operations are performed in the
counterclockwise (positive angular) direction.

Return Values

< 0 Operation failed.

0 Operation was successful.
813

Chapter 22

814
GetUnwrapDirection

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Error text buffer
TCHAR szText[500];
//Set the unwrap direction to
//clockwise
if (Unwrapper.SetUnwrapDirection

(TRUE)< 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int GetUnwrapDirection(
BOOL* pbClockwise);

Include File C_Unwrapper.h

Description Returns the current unwrap direction for the
polar unwrap operation.

Parameters

Name:

Description:

pbClockwise

A pointer to a variable that contains the
current unwrap direction.

Return Values

< 0 Operation failed.

0 Operation was successful.

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
SetOutputScaleFactor

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Variable to receive the
//unwrap direction
BOOL fUnwrapDir;
//Error text buffer
TCHAR szText[500];
//Gets the current unwrap
//direction
if (Unwrapper.GetUnwrapDirection

(&pUnwrapDir)< 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int SetOutputScaleFactor(
float fScaleFactor);

Include File C_Unwrapper.h

Description Sets the output scale factor for the polar
unwrap operation.

Parameters

Name:

Description:

fScaleFactor

The scale factor to apply to the dimensions of
the output image. Values range from 10% to
100%.
815

Chapter 22

816
GetOutputScaleFactor

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Error text buffer
TCHAR szText[500];
//Scale the output image by 50%
if (Unwrapper.SetOutputScaleFactor

(50)< 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int GetOutputScaleFactor(
float* pfScaleFactor);

Include File C_Unwrapper.h

Description Returns the current scale factor for the polar
unwrap operation.

Parameters

Name:

Description:

pfScaleFactor

A pointer to a variable that contains the
current scale factor to apply to the dimensions
of the output image.

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
SetInputImage

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Variable to receive the current
//scale factor
//Error text buffer
float fScaleFactor;
TCHAR szText[500];
//Get the current output scale
//factor
if (Unwrapper.GetOutputScaleFactor

(&fScaleFactor)< 0)
{

//Get error
Unwrapper.GetErrorText(szText,
500);

//Report error
::MessageBox (NULL, szText,
"Error", MB_OK);

}

Syntax int SetInputImage(
CcImage* pImage);

Include File C_Unwrapper.h

Description Sets the input image for the polar unwrap
operation.
817

Chapter 22

818
Parameters

Name:

Description:

pImage

A pointer to a variable that contains the input
image to use for the polar unwrap operation.
Currently, this tool supports only 8-bit
grayscale images.

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Pointer to a grayscale image
//object

//Use structured exception
//handling
_try
{

//Create a new image object.
//Exit on failure.
if (!(pImage = new
CcGrayImage256))
return FALSE;

//Open a 640x480 8-bit grayscale
//bitmap
if (pImage->OpenBMPFile(
"MyImage.bmp") < 0)

//Set the input image.
if (Unwrapper.SetInputImage(
pImage) < 0)
return FALSE;

}

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
SetInputRoi

Example (cont.) _finally
{

//Clean up before leaving
if (pImage)

delete pImage;
}

Syntax int SetInputRoi(
CcRoiBase* pRoi);

Include File C_Unwrapper.h

Description Sets the input ROI for the polar unwrap
operation.

Parameters

Name:

Description:

pRoi

A pointer to a variable that contains the input
ROI to use for the polar unwrap operation.
Currently, this tool supports only elliptical
ROIs.

Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Pointer to an 8-bit grayscale
//image object
CcGrayImage256* pImage;
//Pointer to an elliptical ROI
CcRoiEllipse* pRoi;
819

Chapter 22

820
Example (cont.) //Use structured exception
//handling
_try
{

//Create a new image object.
//Exit on failure.
if (!(pImage = new
CcGrayImage256))
return FALSE;

//Open a 640x480 8-bit grayscale
//bitmap
if (pImage->OpenBMPFile(
"MyImage.bmp") < 0)

//Set the input image.
if (Unwrapper.SetInputImage(
pImage) < 0)
return FALSE;

//Create a new elliptical
//ROI object
if (!(pRoi = new CcRoiEllipse))
return FALSE;

//Configure ROI coordinates
RECT rcBounds = {50, 150, 150,
50};

//Set coordinates to ROI objects
if (pRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22

SizeOutputImage

Example (cont.) //Set the input ROI
if (Unwrapper.SetInputRoi(
pRoi) < 0)
return FALSE;

}
_finally
{

//Clean up before leaving
if (pImage)

delete pImage;
if (pRoi)

delete pRoi;
}

Syntax int SetOutputImage(
CcImage* pOutputImage);

Include File C_Unwrapper.h

Description Sets the size of the supplied output image to
the dimensions required to receive the polar
unwrap image. The appropriate size for the
output image is determined by the radius of
the input ROI, the current unwrap angle, and
the current output image scale factor.

Parameters

Name:

Description:

pOutputImage

A pointer to a variable that contains the
output image.

Return Values

< 0 Operation failed.

0 Operation was successful.
821

Chapter 22

822
Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Pointer to an input image object
CcGrayImage256* pInputImage;
//Pointer to an output image
//object
CcGrayImage256* pOutputImage;
//Pointer to an elliptical ROI
CcRoiEllipse* pInputRoi;
//Use structured exception
//handling
_try
{

//Create an input image object.

//Exit on failure.
if (!(pInputImage = new
CcGrayImage256))
return FALSE;

//Create an output image object.
//Exit on failure.
if (!(pOutputImage = new
CcGrayImage256))
return FALSE;

//Open a 640x480 8-bit grayscale
//bitmap
if (pInputImage->OpenBMPFile(
"MyImage.bmp") < 0)
return FALSE;

//Set the input image.
if (Unwrapper.SetInputImage(
pInputImage) < 0)
return FALSE;

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
Example (cont.) //Create a new elliptical
//ROI object
if (!(pInputRoi = new
CcRoiEllipse))
return FALSE;

//Configure ROI coordinates
RECT rcBounds = {50, 150, 150,
50};

//Set coordinates to ROI objects
if (pInputRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

//Set the input ROI
if (Unwrapper.SetInputRoi(
pInputRoi) < 0)
return FALSE;

//Unwrap 360 degrees (the entire
//ellipse
Unwrapper.SetUnwrapAngle(360);

//Scale the output image by 50%
Unwrapper.SetOutputScaleFactor(
50);

//Size the output image to the
//proper dimensions
if (SizeOutputImage(
pOutputImage) < 0
return FALSE;
823

Chapter 22

824
Unwrap

Example (cont.) //Unwrap the image under the
//input ROI
if
(Unwrapper.Unwrap(pOutputImage)
< 0)
return FALSE;

}
_finally
{

//Clean up before leaving
if (pOutputImage)

delete pOutputImage;
if (pInputImage)

delete pInputImage;
if (pInputRoi)

delete pInputRoi;
}

Syntax int Unwrap(
CcImage* pOutputImage);

Include File C_Unwrapper.h

Description Unwraps the area of the input image under
the input ROI using the currently specified
unwrap angle, unwrap direction, and scale
factor.

Parameters

Name:

Description:

pOutputImage

A pointer to a variable to receive the
unwrapped image.

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
Return Values

< 0 Operation failed.

0 Operation was successful.

Example //Polar unwrap tool API object
CcUnwrapper Unwrapper;
//Pointer to an input image object
CcGrayImage256* pInputImage;
//Pointer to an output image
//object
CcGrayImage256* pOutputImage;
//Pointer to an elliptical ROI
CcRoiEllipse* pInputRoi;

//Use structured exception
//handling
_try
{

//Create an input image object.
//Exit on failure.

if (!(pInputImage = new
CcGrayImage256))
return FALSE;

//Create an output image object.
//Exit on failure.
if (!(pOutputImage = new
CcGrayImage256))
return FALSE;

//Open a 640x480 8-bit grayscale
//bitmap
if (pInputImage->OpenBMPFile(
"MyImage.bmp") < 0)
return FALSE;
825

Chapter 22

826
Example (cont.) //Set the input image.
if (Unwrapper.SetInputImage(
pInputImage) < 0)
return FALSE;

//Create a new elliptical
//ROI object
if (!(pInputRoi = new
CcRoiEllipse))
return FALSE;

//Configure ROI coordinates
RECT rcBounds = {50, 150, 150,
50};

//Set coordinates to ROI objects
if (pInputRoi->SetRoiImageCord(
&rcBounds) < 0)
return FALSE;

//Set the input ROI
if (Unwrapper.SetInputRoi(
pInputRoi) < 0)
return FALSE;

//Start unwrapping at the 90
//degree position
Unwrapper.SetRefAngle(90);

//Unwrap 360 degrees (the entire
//ellipse
Unwrapper.SetUnwrapAngle(360);

//Scale the output image by 50%
Unwrapper.SetOutputScaleFactor(
50);

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
Example (cont.) //Unwrap in the clockwise
//direction
Unwrapper.SetUnwrapDirection(
TRUE);

//Size the output image to the
//proper dimensions
if (SizeOutputImage(
pOutputImage) < 0)
return FALSE;

//Unwrap the image under the
//input ROI
if
(Unwrapper.Unwrap(pOutputImage)
< 0)
return FALSE;

}

_finally
{

//Clean up before leaving
if (pOutputImage)

delete pOutputImage;
if (pInputImage)

delete pInputImage;
if (pInputRoi)

delete pInputRoi;
}

827

Chapter 22

828
Example Program Using the Polar
UnwrapTool API

This example opens an input image and input ROI, and unwraps the
image under the input ROI in the clockwise direction starting at a
reference angle of 90° . The entire ellipse is unwrapped ellipse (360°),
and the resulting output image is scaled by 50%.

//Polar unwrap tool API object
CcUnwrapper Unwrapper;

//Pointer to an input image object
CcGrayImage256* pInputImage;

//Pointer to an output image object
CcGrayImage256* pOutputImage;

//Pointer to an elliptical ROI
CcRoiEllipse* pInputRoi;

//Use structured exception handling

_try
{

//Create an input image object.
//Exit on failure.
if (!(pInputImage = new CcGrayImage256))

return FALSE;

//Create an output image object.
//Exit on failure.
if (!(pOutputImage = new CcGrayImage256))

return FALSE;

Using the Polar Unwrap Tool API

22

22

2

2

2

2

2

2

22
//Open a 640x480 8-bit grayscale bitmap
if (pInputImage->OpenBMPFile("MyImage.bmp") < 0)

return FALSE;

//Set the input image.
if (Unwrapper.SetInputImage(pInputImage) < 0)

return FALSE;

//Create a new elliptical ROI object
if (!(pInputRoi = new CcRoiEllipse))

return FALSE;

//Configure ROI coordinates
RECT rcBounds = {50, 150, 150, 50};

//Set coordinates to ROI objects
if (pInputRoi->SetRoiImageCord(&rcBounds) < 0)

return FALSE;

//Set the input ROI
if (Unwrapper.SetInputRoi(pInputRoi) < 0)

return FALSE;

//Start unwrapping at the 90 degree position
Unwrapper.SetRefAngle(90);

//Unwrap 360 degrees (the entire ellipse)
Unwrapper.SetUnwrapAngle(360);

//Scale the output image by 50%
Unwrapper.SetOutputScaleFactor(50);

//Unwrap in the clockwise direction
Unwrapper.SetUnwrapDirection(TRUE);
829

Chapter 22

830
//Size the output image to the proper dimensions
if (SizeOutputImage(pOutputImage) < 0)

return FALSE;

//Unwrap the image under the input ROI
if (Unwrapper.Unwrap(pOutputImage) < 0)

return FALSE;

}

_finally
{

//Clean up before leaving
if (pOutputImage)

delete pOutputImage;
if (pInputImage)

delete pInputImage;
if (pInputRoi)

delete pInputRoi;
}

23
Using the ROI Shape Fitter

Tool API
Overview of the ROI Shape Fitter Tool API 832

CcShapeFitter Methods . 834
831

Chapter 23

832
Overview of the ROI Shape Fitter Tool API
The API for the ROI Shape Fitter tool has one object only: the
CcShapeFitter class. The CcShapeFitter class is designed to work
within DT Vision Foundry environment. It is useful as an edge
preprocessor for the Gauge tool. The class can be used for fitting a
straight line into an edge, fitting a circle into an arc or an enclosed
contour, or locating the center of gravity for a given object. The input
and output of this tool is an ROI. For example, given an arc, you can
find the center of a circle passing through the arc; given an
approximately round object, you can find the center of gravity and
then measure the minimum and maximum distances (radius) from
the center of gravity to the outline of the object.

Any output from the CcShapeFitter class is passed in the STRT
structure. The CRoiOut variable is used to pass the result of a shape fit
operation. It contains a pointer to the resulting ROI. Note that
currently, the fFitError variable of this structure is not supported.

struct stRTTag
{
 CcRoiBase *CRoiOut; //Output fitted ROI
 float fFitError; //Fit error; not implemented
};
typedef struct stRTTag STRT;

The CcShapeFitter class uses a standard constructor and destructor
and the class methods listed in Table 40.

Table 40: CcShapeFitter Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcShapeFitter(void);

~CcShapeFitter(void);

Using the ROI Shape Fitter Tool API

23

23

2

2

2

2

2

2

23
CcShapeFitter
Class Methods

BOOL SetInputImage(CcImage* CImageIn);

BOOL SetInputRoi(CcRoiBase* InputRoi);

RoiToLineRoi();

RoiToEllipseRoi();

RoiToPointRoi();

STRT * GetResults();

CcList * GetMethodList();

Table 40: CcShapeFitter Object Methods (cont.)

Method Type Method Name
833

Chapter 23

834
CcShapeFitter Methods

This section describes each method of the CcShapeFitter class in detail.

SetInputImage

SetInputRoi

Syntax BOOL SetInputImage(
CcImage* CImageIn);

Include File C_ShapeFitter.h

Description Specifies the input image.

Parameters

Name:

Description:

CImageIn

Pointer to a CcImage object.

Return Values

TRUE The input image was set successfully.

FALSE The input image was not valid and was not
set.

Comments This method passes the input image to the
shape fitter class so that when circles are fit to
ROIs, only those within the image are
generated.

Example None

Syntax BOOL SetInputRoi(
CcRoiBase * InputRoi);

Include File C_ShapeFitter.h

Using the ROI Shape Fitter Tool API

23

23

2

2

2

2

2

2

23
Description Specifies the input ROI.

Parameters

Name:

Description:

InputRoi

Pointer to a DT Vision Foundry ROI class that
specifies the input ROI. It can be a line,
rectangle, ellipse, freehand line, poly
freehand, or freehand ROI. Point and poly line
ROIs are not supported.

Return Values

TRUE Input was valid.

FALSE Input was invalid.

Example The following is a sample code fragment:

CcRoiLine *CRoiLine=new CcRoiLine;
RECT Line;
BOOL bStatus;
CcShapeFitter CShapeFitter;

//Line going from point 2,2 to
//10,10
Line.bottom=2;
Line.top=10;
Line.left=2;
Line.right=10;
//Set the line ROI
CRoiLine->SetRoiImageCord(VOID*)
 &Line);
//Specify the input ROI
bStatus=CShapeFitter.SetInputRoi(

 (CcRoiBase *)&CRoiLine);
835

Chapter 23

836
RoiToLineRoi

Syntax RoiToLineRoi(
);

Include File C_ShapeFitter.h

Description For freehand line input ROIs only, generates a
line ROI representing the least-squares based
line fit to the input points represented by the
input ROI.

Parameters None

Return Values These values are returned by the GetResults
method, described on page 839.

A pointer to a line ROI. A supported ROI was provided.

NULL An unsupported ROI was provided.

Example The following is a sample code fragment:

CcShapeFitter CShapeFitter;
STRT *stResults;
CcRoiBase *CRoiIn, CRoiOut;
//Fill the CRoiIn with appropriate
//data
. . . .
//Set the input
CShapeFitter.SetInputRoi(CRoiIn);
// Invoke the fitting method
CShapeFitter.RoiToLineRoi();

stResults=CShapeFitter.GetResults(
);

CRoiOut = stResults->CRoiOut;

Using the ROI Shape Fitter Tool API

23

23

2

2

2

2

2

2

23
RoiToEllipseRoi

Example (cont.) if (CRoiOut == NULL)
{
 Error("Failed to generate a

new ROI!");
 return;
}

Syntax RoiToEllipseRoi(
);

Include File C_ShapeFitter.h

Description For freehand line and freehand input ROIs
only, generates an ellipse ROI representing the
least-squares-based circle fit to the input
points that are represented by the input ROI.

Parameters None

Return Values These values are returned by the GetResults
method, described on page 839.

A pointer to an ellipse ROI. A supported ROI was provided.

NULL An unsupported ROI was provided.

Example The following is a sample code fragment:

CcShapeFitter CShapeFitter;
STRT *stResults;
CcRoiBase *CRoiIn, CRoiOut;
//Fill the CRoiIn with appropriate
//data
. . . .
//Set the input
CShapeFitter.SetInputRoi(CRoiIn);
837

Chapter 23

838
RoiToPointRoi

Example (cont.) // Invoke the fitting method
CShapeFitter.RoiToEllipseRoi();

stResults=CShapeFitter.GetResults(
);

CRoiOut = stResults->CRoiOut;
if (CRoiOut == NULL)
{
Error("Failed to generate a new

 ROI!");
 return;
}

Syntax RoiToPointRoi(
);

Include File C_ShapeFitter.h

Description For line, rectangle, ellipse, poly freehand, and
freehand input ROIs only, generates a point
ROI that represents the center of gravity (for
enclosed input ROIs) or the middle point (for
line input ROIs).

Parameters None

Return Values These values are returned by the GetResults
method, described on page 839.

A pointer to a point ROI. A supported ROI was provided.

NULL An unsupported ROI was provided.

Using the ROI Shape Fitter Tool API

23

23

2

2

2

2

2

2

23
GetResults

Example The following is a sample code fragment:

CcShapeFitter CShapeFitter;
STRT *stResults;
CcRoiBase *CRoiIn, CRoiOut;

//Fill the CRoiIn with appropriate
//data
. . . .
//Set the input
CShapeFitter.SetInputRoi(CRoiIn);

//Invoke the fitting method
CShapeFitter.RoiToPointRoi();
stResults=CShapeFitter.GetResults(

);
CRoiOut = stResults->CRoiOut;
if (CRoiOut == NULL)
{
Error("Failed to generate a new
 ROI!");
 return;
}

Syntax STRT * GetResults(
);

Include File C_ShapeFitter.h

Description Returns a pointer to the results structure. It
can be invoked after executing one of the
fitting methods.

Parameters None
839

Chapter 23

840
Return Values

A pointer to the results
structure containing the output

ROI.

Successful.

NULL Unsuccessful.

Example The following is a sample code fragment:

CcShapeFitter CShapeFitter;
STRT *stResults;
CcRoiBase *CRoiIn, CRoiOut;

//Fill the CRoiIn with appropriate
//data
. . . .
//Set the input
CShapeFitter.SetInputRoi(CRoiIn);

// Invoke the fitting method
CShapeFitter.RoiToPointRoi();

stResults =
CShapeFitter.GetResults();

CRoiOut = stResults->CRoiOut;
if (CRoiOut == NULL)
{
 Error("Failed to generate a

new
 ROI!");
 return;
}

Using the ROI Shape Fitter Tool API

23

23

2

2

2

2

2

2

23
GetMethodList

Syntax CcList * GetMethodList(
);

Include File C_ShapeFitter.h

Description Returns a pointer to the list of fitter method
pointers. This list provides a way to associate
text names of the fitter methods with pointers
to these methods so that you can invoke the
fitter methods based on their text names. The
text names are defined at the top of the
C_ShapeFitter.h header file.

Parameters None

Return Values These values are returned by the GetResults
method, described on page 839.

A pointer to the list
containing the ROI fitting

methods.

Successful.

NULL Unsuccessful.

Example The following is a sample code fragment:

CcShapeFitter CShapeFitter;
STRT *stResults;
CcRoiBase *CRoiIn, CRoiOut;
CcList *MethodList;
CcFitterMethod *CFitterMethod;
//Fill the CRoiIn with appropriate
//data
. . . .
//Set the input
CShapeFitter.SetInputRoi(CRoiIn);
841

Chapter 23

842
Example (cont.) // Get the list of fitter methods
MethodList=CShapeFitter.

GetMethodList ();
// Get the method pointer from the
//list based on the name
CFitterMethod=(CcFitterMethod *)

TheList->GetViaName(“Circle”);
if (CFitterMethod == NULL)
{
 Error("Invalid method name.");
 return;
}

// Invoke the fitting method
(CShapeFitter.*CFitterMethod->

 ShapeFitterMethod)();

stResults =
CShapeFitter.GetResults();

CRoiOut = stResults->CRoiOut;
if (CRoiOut == NULL)
{
Error("Failed to generate a new

ROI!");
return;
}

24
Using the Search Tool API

Overview of the Search Tool API . 844

CcSearch Methods . 848
843

Chapter 24

844
Overview of the Search Tool API
The CcSearch Geometrically Enhanced Grayscale Correlation class
contains all the methods required to configure and execute a template
matching operation.

The capabilities provided by these methods include the ability to set a
feature image (an image containing the feature that will be searched
for), the ability to specify both a search level and a correlation type
(such as standard grayscale correlation or geometrically enhanced
grayscale correlation), the ability to search an inspection image for
the current feature image, the ability to specify the maximum number
of matches that should be found in the inspection image, and the
ability to retrieve match metrics (such as x- and y-position and match
score) for each match resulting from the most recently performed
template matching operation.

For proper operation, you must specify the following parameters, in
the order shown, before calling the Search method:

1. Inspection image using SetInspectionImage, described on page
849.

2. Inspection ROI using SetInspectionROI, described on page 850.

3. Feature image using SetFeatureImage, described on page 848.

4. Mask image (if you are using a feature-type search) using
SetMaskImage, described on page 851, or GuessMaskImage,
described on page 877.

5. Search type using SetSearchType, described on page 857.

6. Search level using SetSearchLevel, described on page 855.

7. Any other search parameters, such as the subpixel flag, the
maximum number of matches, and so on.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SearchTypeEnum Enumeration

The SearchTypeEnum enumeration defines the valid search types
(correlation methods) that you can use to perform a template
matching operation.

SearchTypeEnum
typedef enum tagSearchTypeEnum
{

GrayScaleNormDirect = 1,
GrayScaleNormFft = 3,
GrayScaleNormDirectEx = 5,
GrayScaleNormFftEx = 7,
GrayScaleNormDirectMMX = 9,
Feature = 777,

} SearchTypeEnum;

The search component supports normalized grayscale correlation,
which can be further categorized according to its invariance to
changes in lighting conditions. The light invariant correlation types
are identified with an Ex postfix.

MatchRecord Type

MatchRecord is the primary structure through which match
information is retrieved from the search component:

MatchRecord

 typedef struct tagMatchRecord
{
 float fXPos;
 float fYPos;
 float fMetric;
 BOOL bValid;

} MatchRecord;
845

Chapter 24

846
The fXPos and fYPos members identify the location of the upper-left
corner of the feature match in the inspection image. fXPos and fYPos
are given in cartesian coordinates, where (0,0) corresponds to the
lower-left corner of the inspection image. The fMetric member
indicates the strength of a feature match and can range from 0.0 to 1.0.
The bValid member indicates whether or not the metric contained in
fMetric is above (TRUE) or below (FALSE) the match score threshold set
by SetScoreThresh.

Class Method Summary

The CcSearch class uses a standard constructor and destructor and
the class methods listed in Table 41.

Table 41: CcSearch Object Methods

Method Type Method Name

Constructor &
Destructor
Methods

CcSearch(void);

~CcSearch(void);

CcSearch Class
Methods

int SetFeatureImage(CcImage *pFeatureImage);

int SetInspectionImage(CcImage *pInspectionImage);

int SetInspectionRoi(CcRoiBase *pInspectionRoi);

int SetMaskImage(CcImage *pMaskImage);

int SetMaxNumMatches(int iMaxNumMatches);

int SetNumPoints(int iNumPoints);

int SetSearchLevel(int iSearchLevel);

int SetSearchType(SearchTypeEnum SearchType);

int SetScoreThresh(float fScoreThresh);

int SetSubpixelFlag(bool bSubpixel);

Using the Search Tool API

2

24

24

2

2

2

2

2

24
CcSearch Class
Methods (cont.)

bool SaveCatalog(char *cName);

bool LoadCatalog(char *cName);

int Search(void);

CcImage* GetFeatureImage(void);

int GetMaxNumMatches();

int GetValidNumMatches();

CcImage* GetMaskImage(void);

int GetMaxMatch(MatchRecord * pMatchRecord);

int GetMinMatch(MatchRecord * pMatchRecord);

int GetMatch(int iMatchIndex, MatchRecord *
pMatchRecord);

int GetSearchTime();

int GetSearchLevel(void);

int GetSearchType();

bool GetSubpixelFlag(void);

float GetScoreThresh(void);

CcRoiBase* GuessMaskImage(void);

Table 41: CcSearch Object Methods (cont.)

Method Type Method Name
847

Chapter 24

848
CcSearch Methods
This section describes each method of the CcSearch class in detail.

SetFeatureImage

Syntax int SetFeatureImage(
CcImage *pFeatureImage);

Include File C_Search.h

Description Specifies the current feature image (the image
containing the feature to search for in the
inspection image).

Parameters

Name:

Description:

pFeatureImage

A pointer to an object of type CcImage, which
contains the feature image. This image should
be of type IMAGE_TYPE_08BIT_GS (8-bit
grayscale), IMAGE_TYPE_24BIT_RGB (24-bit
RGB color), or IMAGE_TYPE_24BIT_HSL
(24-bit HSL color).

Notes You must set the inspection image using
SetInspectionImage and the inspection ROI
using SetInspectionROI before calling this
method. Refer to page 849 and page 850 for
more information.

Return Values

 0 Successful.

< 0 Unsuccessful.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetInspectionImage

Example The following is a sample code fragment:

CcSearch SearchObj;
//Search object instance.
CcImage *pFeatureImage;
// Pointer to grayscale image
// object.
pFeatureImage = new

CcGrayImage256;
Result = SearchObj.SetFeatureImage

 (&pFeatureImage);
if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax int SetInspectionImage(
CcImage *pInspectionImage);

Include File C_Search.h

Description Specifies the inspection image in which to
search.

Parameters

Name:

Description:

pInspectionImage

A pointer to an object of type CcImage, which
contains the feature image. This image should
be of type IMAGE_TYPE_08BIT_GS (8-bit
grayscale), IMAGE_TYPE_24BIT_RGB (24-bit
RGB color), or IMAGE_TYPE_24BIT_HSL
(24-bit HSL color).
849

Chapter 24

850
SetInspectionROI

Notes Ensure that you set the inspection image
before setting any other search parameters.

Return Values

 0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
//Search object instance.
CcImage *pInspectionImage;
// Pointer to grayscale image
// object.
Result = SearchObj.

SetInspectionImage (
pInspectionImage);

if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax int SetInspectionROI(
CcRoiBase *pInspectionRoi);

Include File C_Search.h

Description Specifies the inspection ROI in which to
search.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetMaskImage

Parameters

Name:

Description:

pInspectionRoi

A pointer to an object of type CcRoiBase,
which contains the inspection ROI.

Notes Ensure that you specify the inspection image
using SetInspectionImage (described on page
849) before calling this method.

Return Values

 0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
//Search object instance.
CcRoiBase *pInspectionRoi;
Result = SearchObj.

SetInspectionRoi (
pInspectionRoi);

if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax int SetMaskImage(
CcImage *pMaskImage);

Include File C_Search.h

Description Specifies the mask image.
851

Chapter 24

852
Parameters

Name:

Description:

pMaskImage

A pointer to an object of type CcImage, which
contains the mask image. This image should
be of type IMAGE_TYPE_BINARY (binary
image), IMAGE_TYPE_08BIT_GS (8-bit
grayscale), IMAGE_TYPE_16BIT_GS (16-bit
grayscale), or IMAGE_TYPE_32BIT_GS (32-bit
grayscale).

Notes This method is used only by the feature-type
search. Black pixels in the mask image
designate the pixel locations in the feature
image that are used during the search
operation.

Ensure that you specify the following
parameters before calling this method:

1. Inspection image using
SetInspectionImage, described on page
849,

2. Inspection ROI using SetInspectionROI,
described on page 850, and

3. Feature image using SetFeatureImage,
described on page 848.

Return Values

 0 Successful.

< 0 Unsuccessful.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetMaxNumMatches

Example The following is a sample code fragment:

CcSearch SearchObj;
//Search object instance.
CcImage *pMaskImage;
Result = SearchObj.SetMaskImage(

pMaskImage);
if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax int SetMaxNumMatches(
int iMaxNumMatches);

Include File C_Search.h

Description Specifies the maximum number of matches
that you want the software to look for during
the search.

Parameters

Name:

Description:

iMaxNumMatches

The maximum number of feature matches
that you want the software to locate during
the search. The value must be a positive
integer.

Notes You must set the search type using
SetSearchType before calling this method.
Refer to page 857 for more information on
setting the search type.
853

Chapter 24

854
SetNumPoints

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

int Result, iMaxNumMatches;

// Find 10 matches.

iMaxNumMatches = 10;
Result = SearchObj.

SetMaxNumMatches(
iMaxNumMatches);

if (Result < 0)
{
 // Operation failed.
 // Handle error.

}

Syntax int SetNumPoints(
int iNumPoints);

Include File C_Search.h

Description Specifies the number of points to use in
subpixel analysis.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetSearchLevel

Parameters

Name:

Description:

iNumPoints

The maximum number of points to use in
subpixel analysis. Currently, this number
must be 9. Future versions of this tool may
support additional values.

Notes None

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

int Result, iNumPoints;

// Set the number of points to 9.

iNumPoints = 9;
Result = SearchObj.SetNumPoints(

iNumPoints);
if (Result < 0)
{
 // Operation failed.
 // Handle error.

}

Syntax int SetSearchLevel(
int iSearchLevel);

Include File C_Search.h
855

Chapter 24

856
Description Specifies the search level that you want the
software to apply to both the feature and
inspection images before the template
matching operation is performed.

Parameters

Name:

Description:

iSearchLevel

The search level (or down-sampling factor) by
which the feature and inspection images
should be down-sampled before the template
matching operation is performed. The value
can range from 0 to 4, where 0 is the most
coarse and 4 is the finest search level.

Down-sampling decreases the resolution of
the feature and inspection images and,
therefore, increases the execution speed of the
core correlation algorithms that are used in
the search component. However, this increase
in execution speed is realized at the expense
of accuracy since the down-sampling process
reduces the amount of information in the
feature and inspection images.

Notes Ensure that you set the following parameters
before calling this method:

1. Inspection image using
SetInspectionImage, described on page
849.

2. Inspection ROI using SetInspectionROI,
described on page 850.

3. Feature image using SetFeatureImage,
described on page 848.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetSearchType

Notes (cont.) 4. Mask image (if you are using a
feature-type search) using SetMaskImage,
described on page 851, or
GuessMaskImage, described on page 877.

5. Search type using SetSearchType,
described on page 857.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int Result;
int iSearchLevel;
// Use a search level of 3 in
// the search.
iSearchLevel = 3;
Result = SearchObj.SetSearchLevel(

 iSearchLevel);
if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax int SetSearchType(
SearchTypeEnum SearchType);

Include File C_Search.h
857

Chapter 24

858
Description Specifies the correlation type that you want to
use in the template matching operation.

Parameters

Name:

Description:

SearchType

The correlation technique to use in the
template matching operation. Valid values for
this parameter are defined by the
SearchTypeEnum enumeration, described on
page 845.

Notes Ensure that you specify the following
parameters before calling this method:

1. Inspection image using
SetInspectionImage, described on page
849.

2. Inspection ROI using SetInspectionROI,
described on page 850.

3. Feature image using SetFeatureImage,
described on page 848.

4. Mask image (if you are using a
feature-type search) using SetMaskImage,
described on page 851, or
GuessMaskImage, described on page 877.

Return Values

0 Successful.

< 0 Unsuccessful.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetScoreThresh

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int Result;

// Use light invariant normalized
// grayscale correlation.

Result = SearchObj.SetSearchType(
 NormGrayScaleEx);

if (Result < 0)
{
// Operation failed – handle error
}

Syntax int SetScoreThresh(
float fScoreThresh);

Include File C_Search.h

Description Specifies the lower bound of the range of
match scores that the software should
consider as valid.

Parameters

Name:

Description:

fScoreThresh

The lower bound of the range of match scores
that the software should consider as valid. A
match with a score that falls below
fScoreThresh is not considered a match.
859

Chapter 24

860
Description (cont): All match scores in a given result set (those
resulting from a search operation) are
normalized to values between 0.0 and 1.0,
where the best match has the value closest to
1.0. For example, if fScoreThresh = 0.5, only the
matches with scores between 0.5 and 1.0 are
reported as valid.

When retrieved from the result set by calls to
GetMatch, valid matches have the bValid
member of the MatchRecord structure set to
TRUE.

Notes You must set the search level using
SetSearchLevel before calling this method.
Refer to page 855 for more information on
setting the search level.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
float fScoreThresh;
int Result;
// Report only matches with a
// score of 0.5 or greater.
fScoreThresh = 0.5;
Result=SearchObj.SetScoreThresh(
 fScoreThresh);
if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Using the Search Tool API

2

24

24

2

2

2

2

2

24
SetSubpixelFlag

Syntax int SetSubpixelFlag(
bool bSubpixel);

Include File C_Search.h

Description Specifies whether or not to use subpixel
analysis.

Parameters

Name:

Description:

bSubpixel

Determines whether subpixel analysis is used.
If TRUE, subpixel analysis is used. If FALSE,
subpixel analysis is not used.

Notes You must set the search level using
SetSearchLevel before calling this method.
Refer to page 855 for more information on
setting the search level.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:
CcSearch SearchObj;
// Search object instance.
int Result;

Result=SearchObj.SetSubpixelFlag(
TRUE);

if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

861

Chapter 24

862
SaveCatalog

Syntax bool SaveCatalog(
char *cName);

Include File C_Search.h

Description Saves the specified catalog.

Parameters

Name:

Description:

cName

A pointer to the file name of the catalog to
save.

Notes The following parameters are saved when this
method is called:

• Feature image,

• Mask image,

• Search type,

• Match score threshold,

• Search level,

• Maximum number of matches,

• Subpixel analysis flag,

• Color plane access for color images.

Ensure that you explicitly set these
parameters; otherwise, you may save their
default values and not the values you
intended to save.

Return Values

TRUE Successful.

FALSE Unsuccessful.

Using the Search Tool API

2

24

24

2

2

2

2

2

24

LoadCatalog

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
char myfile[256];
bool Result;

Result=SearchObj.SaveCatalog(
myfile);

if (Result = FALSE)
{
 // Operation failed.
 // Handle error.
}

Syntax bool LoadCatalog(
char *cName);

Include File C_Search.h

Description Loads the specified catalog.

Parameters

Name:

Description:

cName

A pointer to the file name of the catalog to
load.

Notes The following parameters are loaded when
this method is called:

• Feature image,

• Mask image,

• Search type,

• Match score threshold,
863

Chapter 24

864
Search

Notes (cont.) • Search level,

• Maximum number of matches,

• Subpixel analysis flag,

• Color plane access for color images.

Return Values

TRUE Successful.

FALSE Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
char myfile[256];
bool Result;

Result=SearchObj.LoadCatalog(
myfile);

if (Result = FALSE)
{
 // Operation failed.
 // Handle error.
}

Syntax int Search(void);

Include File C_Search.h

Description Searches the specified inspection image and
ROI for the feature image specified by
SetFeatureImage.

Parameters None.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
Return Values

0 Successful.

< 0 Unsuccessful.

Notes Invoke this method after all of the following
parameters have been specified (in the order
specified):

1. Inspection image using
SetInspectionImage, described on page
849.

2. Inspection ROI using SetInspectionROI,
described on page 850.

3. Feature image using SetFeatureImage,
described on page 848.

4. Mask image (if you are using a
feature-type search) using SetMaskImage,
described on page 851, or
GuessMaskImage, described on page 877.

5. Search type using SetSearchType,
described on page 857.

6. Search level using SetSearchLevel,
described on page 855.

7. Any other search parameters, such as the
subpixel flag, the maximum number of
matches, and so on.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.

// Load image data ...
865

Chapter 24

866
GetFeatureImage

Example (cont.) Result = SearchObj.Search();
if (Result < 0)
{
 // Operation failed.
 // Handle error.
}

Syntax CcImage* GetFeatureImage(void);

Include File C_Search.h

Description Returns the currently specified feature image,
which was set using SetFeatureImage or by
using LoadCatalog.

Parameters None

Return Values

A pointer to the currently
specified feature image (of

type CcImage).

This image must be of type
IMAGE_TYPE_08BIT_GS (8-bit grayscale),
IMAGE_TYPE_24BIT_RGB (24-bit RGB color),
or IMAGE_TYPE_24BIT_HSL (24-bit HSL
color).

NULL Unsucessful.

Notes You can use this method to retrieve the
feature/catalog image after loading the
catalog from disk.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
CcImage *Result;
//Get the currently specified
//feature image.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
GetMaxNumMatches

Example (cont.) Result = SearchObj.
GetFeatureImage();

Syntax int GetMaxNumMatches(
void);

Include File C_Search.h

Description Returns the maximum number of matches
that you want the software to locate during
the search (this value is set by
SetMaxNumMatches).

Parameters None

Return Values

The maximum number of
matches that you want the

software to locate during the
search.

Successful.

NULL Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int iNumMatches
// Get the number of matches found
// during the last search.

iNumMatches = SearchObj.
GetMaxNumMatches();
867

Chapter 24

868
GetValidNumMatches

Syntax int GetValidNumMatches(
);

Include File C_Search.h

Description Returns the number of valid matches in the
current search result set (the number of
matches that have a score that is greater than
the current match score threshold).

Parameters None

Return Values

The number of matches that
have a score that is greater

than the current match score
threshold.

Successful.

NULL Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int iValMatches;

// Get the number of matches found
//during the last search.

iValMatches = SearchObj.
GetValidNumMatches();

Using the Search Tool API

2

24

24

2

2

2

2

2

24
GetMaskImage

GetMaxMatch

Syntax CcImage* GetMaskImage(
void);

Include File C_Search.h

Description Returns the currently specified mask image,
which was set using SetMaskImage or by
using LoadCatalog.

Parameters None

Return Values

A pointer to the currently
specified mask image (of type

CcImage).

This image must be of type
IMAGE_TYPE_BINARY (binary image),
IMAGE_TYPE_08BIT_GS (8-bit grayscale),
IMAGE_TYPE_16BIT_GS (16-bit grayscale), or
IMAGE_TYPE_32BIT_GS (32-bit grayscale).

NULL Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
CcImage *Result;
// Retrieve the currently
// specified mask image.
Result = SearchObj.

GetMaskImage();

Syntax int GetMaxMatch(
MatchRecord *pMatchRecord);

Include File C_Search.h
869

Chapter 24

870
Description Returns the match with the highest match
score in the match set generated during the
last search operation (when Search was last
called).

Parameters

Name:

Description:

pMatchRecord

The match metrics, such as x- and y-position,
for the match with the maximum match score
in the current result set.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
MatchRecord MatchRecord;
int Result;
// Retrieve the match with the
// maximum match score.
Result = SearchObj.GetMaxMatch(
 &MatchRecord);
if (Result > 0)
{
 // Process the data contained
 // in MatchRecord.
}

Using the Search Tool API

2

24

24

2

2

2

2

2

24
GetMinMatch

Syntax int GetMinMatch(
MatchRecord *pMatchRecord);

Include File C_Search.h

Description Returns the match, in the match set generated
during the last search operation (when Search
was last called), with the lowest match score
that is still above the match threshold
specified in SetScoreThresh.

Parameters

Name:

Description:

pMatchRecord

The match metrics, such as x- and y-position,
for the match with the lowest match score that
is still above the match threshold specified in
SetScoreThresh.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
MatchRecord MatchRecord;
int Result;
// Retrieve the match with the
// lowest valid match score.
Result = SearchObj.GetMinMatch(
 &MatchRecord);
if (Result > 0)
{ // Process the data contained
 // in MatchRecord.}
871

Chapter 24

872
GetMatch

Syntax int GetMatch(
int iMatchIndex,
MatchRecord *pMatchRecord);

Include File C_Search.h

Description Returns a specific match record from the
current result set.

Parameters

Name:

Description:

iMatchIndex

The match record in the current result set that
you want to return. The value can range from
0 to n, where n is the value returned by
GetMaxNumMatches (the total number of
matches in the current result set).

Name:

Description:

pMatchRecord

The match metrics, such as x- and y-position,
for the match identified by nMatchIndex.

Return Values

0 Successful.

< 0 Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
MatchRecord MatchRecord;
int Result, iMatchIndex;
iMatchIndex = 2;

// Retrieve the third match
// result.

Using the Search Tool API

2

24

24

2

2

2

2

2

24
GetSearchTime

Example (cont.) Result = SearchObj.GetMatch(
 iMatchIndex, &MatchRecord);
if (Result > 0)
{
 // Process the data contained
 // in MatchRecord.
}

Syntax int GetSearchTime(
);

Include File C_Search.h

Description Returns the execution time, in milliseconds, of
the last template matching operation.

Parameters None

Return Values

The execution time, in
milliseconds, of the last

template matching
operation.

Successful.

NULL Unsuccessful.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int Result;
// Get the execution time of the
// last search.
Result = SearchObj.

GetSearchTime();
873

Chapter 24

874
GetSearchLevel

GetSearchType

Syntax int GetSearchLevel(
void);

Include File C_Search.h

Description Returns the current search level, which was set
using SetSearchLevel.

Parameters None

Return Values

The current search level. Values can range from 0 to 4, where 0 is the
most coarse and 4 is the finest search level.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int Result;

// Get the current search level
Result = SearchObj.

GetSearchLevel();

Syntax int GetSearchType(
);

Include File C_Search.h

Description Returns the current search type, which was set
using SetSearchType.

Parameters None

Using the Search Tool API

2

24

24

2

2

2

2

2

24
GetSubpixelFlag

Return Values

The current search type. Valid values for this parameter are defined by
the SearchTypeEnum enumeration, described
on page 845.

Notes None

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
int Result;

// Get the current search type
Result = SearchObj.

GetSearchType();

Syntax bool GetSubpixelFlag(
void);

Include File C_Search.h

Description Returns whether or not subpixel analysis was
specified using SetSubpixelFlag.

Parameters None

Return Values

TRUE Subpixel analysis was specified.

FALSE Subpixel analysis was not specified.

Notes None
875

Chapter 24

876
GetScoreThresh

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
bool Result;

// Determine whether subpixel
// analysis was specified.
Result = SearchObj.

GetSubpixelFlag();

Syntax float GetScoreThresh(
void);

Include File C_Search.h

Description Returns the current score threshold, which
was set using SetScoreThresh.

Parameters None

Return Values

The current score threshold
value.

The lower bound of the range of match scores
that the software should consider as valid. A
match with a score that falls below fScoreThresh
is not considered a match.

Notes All match scores in a given result set (those
resulting from a search operation) are
normalized to values between 0.0 and 1.0,
where the best match has the value closest to
1.0. For example, if fScoreThresh = 0.5, only the
matches with scores between 0.5 and 1.0 are
reported as valid.

Using the Search Tool API

2

24

24

2

2

2

2

2

24

GuessMaskImage(void)

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
float Result;

// Get the score threshold
// that was set.
Result = SearchObj.

GetScoreThresh();

Syntax CcRoiBase* GuessMaskImage(
void);

Include File C_Search.h

Description Automatically guesses and sets the mask
image; this method can be used instead of
SetMaskImage. It returns the ROI of a guessed
search object. This ROI encloses the region
where the object you are searching for was
guessed to exist.

Parameters None

Return Values

Pointer to an ROI of type
CcRoiBase that encloses the

guessed object.
877

Chapter 24

878
Notes You must set the feature image using
SetFeatureImage, described on page 848,
before calling this method.

You are responsible for freeing the returned
ROI.

Example The following is a sample code fragment:

CcSearch SearchObj;
// Search object instance.
CcRoiBase* Result;

// Returns the mask image ROI
Result = SearchObj.

GuessMaskImage();

25
Using the Serial I/O Tool API

Overview of the Serial I/O Tool API. 880

CcSerialIO Methods . 882

Example Program Using the Serial I/O Tool API 900
879

Chapter 25

880
Overview of the Serial I/O Tool API
The API for the Serial I/O tool has one object only: the CcSerialIO
class. This tool reads data from and writes data to the COM ports.
You can use all COM ports at the same time and read from or write to
these ports in synchronous or asynchronous mode.

The CcSerialIO class uses a standard constructor and destructor and
the class methods listed in Table 42.

Table 42: CcSerialIO Object Methods

Method Type Method Name

CcSerialIO
Constructor and
Destructor

CcSerialIO();

~CcSerialIO();

CcSerialIO Class
Methods

BOOL IsComPortAvailable(int iComPort);

int SetComPortNumber(int iComPort);

int GetComPortNumber();

int InitializeComPort(BOOL bAsync = FALSE,
 BOOL bPurge = FALSE);

int InitializeComPortEx(BOOL bAsync = FALSE,
 BOOL bPurge = FALSE);

int FreeComPort(void);

int WriteComPort(char* cPrefix,char* cText,char* cSuffix);

int WriteComPort(char* cPrefix, CcString* CString,
 char* cSuffix);

int WriteComPort(char* cPrefix, CcNumber* CNumber,
 char* cSuffix);

char* ReadComPort(char* cPrefix, char* cSuffix);

int ReadComPort(char* cPrefix, CcString* CString,
 char* cSuffix);

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

CcSerialIO Class
Methods (cont).

int ReadComPort(char* cPrefix,CcNumber* CNumber,
 char* cSuffix);

int SetTimeOut(int iTimeOutRead,int iTimeOutWrite);

int GetTimeOut(int *iTimeOutRead,int* iTimeOutWrite);

int SetNumberFormat(int iBefore, int iAfter);

int GetNumberFormat(int* iBefore, int* iAfter);

int SetComOptions(HWND hWnd);

int GetAllComOptions(STALLCOMOPT* stAllOptions);

int SetAllComOptions(STALLCOMOPT* stAllOptions);

int Save(char* cFileName);

int Restore(char* cFileName);

BOOL IsAsync(void);

Table 42: CcSerialIO Object Methods (cont.)

Method Type Method Name
881

Chapter 25

882
CcSerialIO Methods
This section describes each method of the CcSerialIO class in detail.

FreeComPort

GetAllComOptions

Syntax int FreeComPort(void);

Include File C_Serial.h

Description Frees up the COM port for use by other
applications.

Notes While you are using a COM port, no other
applications in the system can use the COM
port. After using it, call this method to free the
COM port for use by other applications.

Return Values

−1 Unsuccessful.

The value of the active COM
port.

Successful.

Syntax int GetAllComOptions(
STALLCOMOPT* stAllOptions);

Include File C_Serial.h

Description Retrieves all options for the active COM port.

Parameters

Name:

Description:

stAllOptions

Pointer to a STALLCOMOPT structure that
defines the COM port options.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

Notes The STALLCOMOPT structure is defined as
follows:

struct STComAllOptions {
int iBefore,iAfter;
COMMCONFIG stComConfig;
COMMTIMEOUTS stComTimeouts;
};
typedef struct STComAllOptions

STALLCOMOPT;

The parameters are described as follows:

• iBefore − Is the number of decimal places
before the decimal point for number
formatting.

• iAfter − Is the number of decimal places
after the decimal point for number
formatting.

• stComConfig − Is a standard Windows
COMMCONFIG structure. For more
information, refer to the Windows SDK
documentation.

• stComTimeouts − A standard Windows
COMMTIMEOUTS structure. For more
information, refer to the Windows SDK
documentation.

This method rarely needs to be used and is for
advanced users only. The easiest way to use
this method is to first call
GetAllComOptions() to fill in the structure.
Then, change only what is needed before
calling SetAllComOptions() to make the
needed changes to the COM port options.
883

Chapter 25

884
GetComPortNumber

GetNumberFormat

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetComPortNumber(void);

Include File C_Serial.h

Description Returns the number of the COM port being
used.

Notes The serial I/O class works with one COM port
at a time. You can use this method to
determine which COM port is the active COM
port.

Return Values

−1 Unsuccessful.

The value of the active COM
port.

Successful.

Syntax int GetNumberFormat(
 int* iBefore,
 int* iAfter);

Include File C_Serial.h

Description Retrieves the number format (number of
integers before and after the decimal point)
for the active COM port.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

GetTimeOut

Parameters

Name:

Description:

iBefore

The number of integers before the decimal
point.

Name:

Description:

iAfter

The number of integers after the decimal
point.

Notes When a Number object is read from a COM
port, the object is formatted for the desired
decimal places before and after the decimal
point. Use this method to retrieve this
formatting.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetTimeOut(
 int* iTimeOutRead,
 int* iTimeOutWrite);

Include File C_Serial.h

Description Retrieves the timeouts for read and write
operations for the active COM port.

Parameters

Name:

Description:

iTimeOutRead

Timeout for read operations, in milliseconds.
To disable the timeout, enter 0.
885

Chapter 25

886
InitializeComPort

Name:

Description:

iTimeOutWrite

Timeout for write operations, in milliseconds.
To disable the timeout, enter 0.

Notes Each COM port has separate timeouts for
reading and writing.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int InitializeComPort(
 BOOL bAsync = FALSE,
 BOOL bPurge = FALSE);

Include File C_Serial.h

Description Initializes the active COM port. If there is an
existing COM port handle, this method frees
the handle, then creates a new handle to the
COM port; therefore, any data in the existing
COM port is lost.

Parameters

Name:

Description:

bAsync

Set this parameter to TRUE if you want to
perform asynchronous reads/writes on the
COM port. Set this parameter to FALSE to
perform synchronous reads/writes on the
COM port.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

InitializeComPortEx

Name:

Description:

bPurge

Set this parameter to TRUE to clear/purge the
associated buffer for the COM port for both
the read and write operations.

Notes You can use each COM port for asynchronous
or synchronous communication. Each COM
port also has a 1K write buffer and a 1K read
buffer associated with it. You can use the
bPurge parameter to clear these buffers when
initializing a COM port. The COM port must
be initialized before calling any read/write
operation.

See also InitializeComPortEx, described on
page 887.

Return Values

−1 Unsuccessful.

The value of the active COM
port.

Successful.

Syntax int InitializeComPortEx(
 BOOL bAsync = FALSE,
 BOOL bPurge = FALSE);

Include File C_Serial.h

Description Initializes the active COM port using the
existing COM port handle; therefore, any data
in the existing COM port is saved.
887

Chapter 25

888
Parameters

Name:

Description:

bAsync

Set this parameter to TRUE if you want to
perform asynchronous reads/writes on the
existing COM port. Set this parameter to
FALSE to perform synchronous reads/writes
on the existing COM port.

Name:

Description:

bPurge

Set this parameter to TRUE to clear/purge the
associated buffer for the existing COM port
for both the read and write operations.

Notes You can use each COM port for asynchronous
or synchronous communication. Each COM
port also has a 1K write buffer and a 1K read
buffer associated with it. You can use the
bPurge parameter to clear these buffers when
initializing a COM port. The COM port must
be initialized before calling any read/write
operation.

See also InitializeComPort, described on
page 886.

Return Values

−1 Unsuccessful.

The value of the active COM
port.

Successful.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

IsAsync

IsComPortAvailable

Syntax BOOL IsAsync(void);

Include File C_Serial.h

Description Queries the Serial I/O tool to determine if
data is being transferred asynchronously for
the active COM port.

Notes You can use this method to query the active
COM port to determine whether it is set up
for asynchronous or synchronous
communication.

Return Values

False COM port is using asynchronous
communication.

True COM port is using asynchronous
communication.

Syntax BOOL IsComPortAvailable(
int iComPort);

Include File C_Serial.h

Description Queries the computer to determine whether
the COM port is available.

Parameters

Name:

Description:

iComPort

Number of the desired COM port.

Notes Use this method before using a COM port to
determine whether it is available for use, and
that it is working properly on the system.
889

Chapter 25

890
ReadComPort

Return Values

False The COM port is not available.

True The COM port is available.

Syntax char* ReadComPort(
 char* cPrefix,
 char* cSuffix);

or

int ReadComPort(
 char* cPrefix,
 CcString* CString,
 char* cSuffix);

or

int ReadComPort(
 char* cPrefix,
 CcNumber* CNumber,
 char* cSuffix);

Include File C_Serial.h

Description Reads the active COM port that is returning
the data and discards the given prefix and
suffix.

Parameters

Name:

Description:

cPrefix

Prefix of the data to wait for before reading
the data that is entering the COM port.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

Name:

Description:

CString

DT Vision Foundry String object that is
receiving the data that is entering the COM
port.

Name:

Description:

CNumber

DT Vision Foundry Number object that is
receiving the data that is entering the COM
port.

Name:

Description:

cSuffix

Suffix of the data to wait for before reading
the data that is entering the COM port.

Notes This method has three forms. Not all
parameters may be required.

You can use the contents of a DT Vision
Foundry String or Number object to receive
the data, or have the method return a simple
string pointer. If you use a Number object, the
class automatically formats the Number
objects to the desired decimal places
according to the options set up for this COM
port.

In all cases, only the data for the read
transmission is returned. The prefix and suffix
information is discarded.

Return Values

−1 Unsuccessful.

0 Successful.

NULL Unsuccessful.

A pointer to string (char*)
containing read.

Successful.
891

Chapter 25

892
Restore

Save

Syntax int Restore(char* cFileName);

Include File C_Serial.h

Description Restores all Serial I/O tool settings from disk.

Parameters

Name:

Description:

cFileName

Full path name of the file used to restore the
serial I/O options.

Notes Use these setting to restore all COM port
settings from disk.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int Save(char* cFileName);

Include File C_Serial.h

Description Saves all Serial I/O tool settings to disk.

Parameters

Name:

Description:

cFileName

Full path name of the file that is used to save
serial I/O options.

Notes Use these setting to save all COM port setting
to disk.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

SetAllComOptions

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetAllComOptions(
STALLCOMOPT* stAllOptions);

Include File C_Serial.h

Description Sets all options for the active COM port.

Parameters

Name:

Description:

stAllOptions

Pointer to a STALLCOMOPT structure that is
used to define the COM port options.

Notes The STALLCOMOPT structure is defined as
follows:

struct STComAllOptions {
int iBefore,iAfter;
COMMCONFIG stComConfig;
COMMTIMEOUTS stComTimeouts;
};
typedef struct STComAllOptions

STALLCOMOPT;

The parameters are defined as follows:

• iBefore − Is the number of decimal places
before the decimal point for number
formatting.

• iAfter − Is the number of decimal places
after the decimal point for number
formatting.
893

Chapter 25

894
SetComOptions

Notes (cont.) • stComConfig − Is a standard Windows
COMMCONFIG structure. For more
information, refer to the Windows SDK
documentation.

• stComTimeouts − Is a standard Windows
COMMTIMEOUTS structure. For more
information, refer to the Windows SDK
documentation.

This method rarely needs to be used and is for
advanced users only. The easiest way to use
this method is to first call
GetAllComOptions() to fill in the structure.
Then, change only what is needed before
calling SetAllComOptions() to make the
needed changes to the COM port options.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetComOptions(HWND hWnd);

Include File C_Serial.h

Description Sets the COM port options using the
operating system-supplied dialog box.

Parameters

Name:

Description:

hWnd

Handle of the window to become the parent
window for the system dialog box.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

SetComPortNumber

Notes The Windows operating system supplies a
common dialog box for setting COM port
settings such as baud rate, parity, stop bits,
and so on. You can set these COM port
options for the active COM port using this
method. The dialog box should have a parent
window to attach to. You supply the handle to
this window (a window in your
application/tool) in the hWnd parameter.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetComPortNumber(
int iComPort);

Include File C_Serial.h

Description Sets the COM port number (1 to 15).

Parameters

Name:

Description:

iComPort

The number of the COM port to become the
active COM port for the class.

Notes The serial I/O class works with one COM port
at a time. Use this method to activate the
desired COM port. Other methods then
operate on this COM port.
895

Chapter 25

896
SetNumberFormat

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SetNumberFormat(
 int iBefore,
 int iAfter);

Include File C_Serial.h

Description Sets the number format (number of integers
before and after the decimal point) for the
active COM port.

Parameters

Name:

Description:

iBefore

The number of integers before the decimal
point.

Name:

Description:

iAfter

The number of integers after the decimal
point.

Notes When a Number object is written to a COM
port, the object is formatted for the desired
decimal places before and after the decimal
point. Use this method to set this formatting.

Return Values

−1 Unsuccessful.

0 Successful.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

SetTimeOut

Syntax int SetTimeOut(
 int iTimeOutRead,
 int iTimeOutWrite);

Include File C_Serial.h

Description Sets the read and write timeouts for the active
COM port.

Parameters

Name:

Description:

iTimeOutRead

Timeout for read operations, in milliseconds.
To disable the timeout, enter 0.

Name:

Description:

iTimeOutWrite

Timeout for write operations, in milliseconds.
To disable the timeout, enter 0.

Notes Each COM port has separate timeouts for
reading and writing.

Return Values

−1 Unsuccessful.

0 Successful.
897

Chapter 25

898
WriteComPort

Syntax int WriteComPort(
 char* cPrefix,
 char* cText,
 char* cSuffix);

or

int WriteComPort(
 char* cPrefix,
 CcString* CString,
 char* cSuffix);

or

int WriteComPort(
 char* cPrefix,
 CcNumber* CNumber,
 char* cSuffix);

Include File C_Serial.h

Description Writes the prefix, data, and suffix out the
active COM port.

Parameters

Name:

Description:

cPrefix

Pointer to a string that contains the prefix to
send out the COM port.

Name:

Description:

cText

Pointer to a string that contains the data to
send out the COM port.

Name:

Description:

CString

Pointer to a DT Vision Foundry String object
that contains the data to send out the COM
port.

Using the Serial I/O Tool API

2

25

25

25

2

2

2

2

2

Name:

Description:

CNumber

Pointer to a DT Vision Foundry Number
object that contains the data to send out the
COM port.

Name:

Description:

cSuffix

Pointer to a string that contains the suffix to
send out the COM port.

Notes This method has three forms. You can use the
contents of a DT Vision Foundry String or
Number object as the data along with normal
strings. The class converts these objects to text
and sends it out the active COM port. It also
automatically formats the Number objects to
the desired decimal places according to the
options set up for this COM port.

Return Values

−1 Unsuccessful.

0 Successful.
899

Chapter 25

900
Example Program Using the Serial I/O
Tool API

This program demonstrates the use of the serial I/O API.

Note: This example is made from code fragments from the Serial
I/O tool with error checking removed. For an actual program, you
should check return values and pointers.

int SomeFunction(void)
{

CcSerialIO CCom;

//Set class to use COM1
CCom.SetComPortNumber (1);

//See if COM port is ok to use
if(CCom.IsComPortAvailable(1) != TRUE)

return(-1);

//Initialize COM Port
CCom.InitializeComPort(FALSE, FALSE);

//Write Text out Port
CCom.WriteComPort (“Prefix”, “Data”, “Suffix”);

//Return OK
return(0);

}

26
Using the Sound Tool API
Overview of the Sound Tool API . 902

Example Program Using the Sound Tool API 908
901

Chapter 26

902
Overview of the Sound Tool API
The API for the Sound tool uses DT Vision Foundry API objects.
CcWAV uses a standard constructor and destructor and the class
methods listed in Table 43.

Table 43: CcWAV Object Methods

Method Type Method Name

CcWAV Class
Methods

void SetWAVFile(char *pszWAVFile);

void SetSyncMode(int iMode);

int GetSyncMode();

int PlayWAVFile(int iLoopMode);

int PlayWAVFile(char *pszWAVFile, int iLoopMode);

void CancelWAVPlay();

Using the Sound Tool API

2

2

26

26

26

2

2

2

2

CcWAV Methods
This section describes each method of the CcWAV class in detail.

CancelWAVPlay

GetSyncMode

Syntax void CancelWAVPlay(void);

Include File C_Wav.h

Description Terminates any WAV playback that is in
progress.

Notes This method stops the playback of any WAV
audio file, including looped and
asynchronous playback. Since it is not an error
to cancel playback when there is no sound,
this method does not return a status value.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetSyncMode (void);

Include File C_Wav.h

Description Returns the current synchronous /
asynchronous playback mode value.

Notes A CcWAV object defaults to synchronous
playback.
903

Chapter 26

904
PlayWAVFile

Return Values

1 Playback is synchronous; a call to
PlayWAVFile() waits until completion before
returning.

0 Playback is asynchronous; a call to
PlayWAVFile() returns immediately after
starting.

Syntax int PlayWAVFile(int iLoopMode);

Include File C_Wav.h

Description Plays a WAV file in single-play or looped-play
mode.

Parameters

Name:

Description:

iLoopMode

Specifies the play mode. If iLoopMode is 0, the
WAV file is played once. Otherwise, the WAV
file is played continuously.

Notes You must call SetWAVFile() to specify the
WAV file to play. You can stop looped-play
mode either by calling PlayWAVFile() with a
new WAV audio file or by calling
CancelWAVPlay().

Return Values

−1 Unsuccessful.

0 Successful.

Using the Sound Tool API

2

2

26

26

26

2

2

2

2

PlayWAVFile

SetSyncMode

Syntax int PlayWAVFile(
 char * pszWAVFile,
 int iLoopMode);

Include File C_Wav.h

Description Plays a WAV file in single-play or looped-play
mode.

Parameters

Name:

Description:

pszWAVFile

Full path name of the WAV audio file.

Name:

Description:

iLoopMode

Specifies the play mode. If iLoopMode is 0, the
WAV file is played once. Otherwise, the WAV
file is played continuously.

Notes The path name that is specified as the first
parameter overrides any previous path name
that was specified by a call to SetWAVFile().
You can stop looped-play mode either by
calling PlayWAVFile() with a new WAV
audio file or by calling CancelWAVPlay().

Return Values

−1 Unsuccessful.

0 Successful.

Syntax void SetSyncMode (int iMode);

Include File C_Wav.h
905

Chapter 26

906
SetWAVFile

Description Sets either synchronous or asynchronous
playback mode.

Parameters

Name:

Description:

iMode

Specifies the playback mode. If iMode is 0,
playback is asynchronous; a call to
PlayWAVFile() returns immediately after
starting. If iMode is 1, playback is
synchronous; a call to PlayWAVFile() waits
until completion before returning.

Notes A CcWAV object defaults to synchronous
playback.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax void SetWAVFile(char *pszWAVFile);

Include File C_Wav.h

Description Specifies the WAV file to play.

Parameters

Name:

Description:

pszWAVFile

Full path name of the WAV audio file.

Notes This method must be called prior to using a
PlayWAVFile() method that does not take a
WAV path name as its first parameter.

Using the Sound Tool API

2

2

26

26

26

2

2

2

2

Return Values

−1 Unsuccessful.

0 Successful.
907

Chapter 26

908
Example Program Using the Sound Tool
API

This example code creates a CcWAV object. The Sound tool object is
used to play a specified WAV audio file.

Note: This example is made from code fragments from the Sound
tool with error checking removed. In an actual program, you should
check return values and pointers.

int SomeFunction(char *pszWAVPathname)
{

CcWAV* CWAVPlayer;
int iReturn;

//Create a new Sound tool object.
//It initializes in synchronous play mode.
//Call SetSyncMode() to change it to asynchronous
//play mode, if desired.

CWAVPlayer = new CcWAV();
//Play the sound file once. To play in a continuous
//loop, call the method with iLoopMode = 1.

iReturn =
CWAVPlayer->PlayWAVFile(pszWAVPathname, 0);

//Free the memory

delete CWAVPlayer;

//Return status
return(iReturn);

}

27
Using the Text Tool API

Overview of the Text Tool API . 910

CcTextRoiRect Methods. 911
909

Chapter 27

910
Overview of the Text Tool API
The API for the Text tool has one object only: the CcTextRoiRect class.
This tool places text in an image or its overlay. It is derived from a
rectangle ROI class.

The CcTextRoiRect class uses the class methods listed in Table 44.

Table 44: CcTextRoiRect Object Methods

Method Type Method Name

Constructor and
Destructor
Methods

CcTextRoiRect();

~ CcTextRoiRect();

CcTextRoiRect
Class Methods

int RestoreOrigImageData(CcImage* CImage);

int CopyTextToImage(HWND hChildWindow,
 CcImage* CImage);

int SetPosition(POINT* stPosition);

int GetPosition(POINT* stPosition);

int ClearAllLinesOfText(void);

int AddLineOfText(char* cLineOfText);

char* GetLineOfText(int iLineNumber);

int GetNumberOfLinesOfText(void);

int SetDrawTo(int iDrawToFlag);

int GetDrawTo(void);

int SetColors(float fForeground,float fBackground);

int GetColors(float* fForeground,float* fBackground);

int SelectFont(LOGFONT* pLogFont);

Using the Text Tool API

2

2

2

27

27

2

2

2

27
CcTextRoiRect Methods
This section describes each method of the CcTextRoiRect class in
detail.

RestoreOrigImageData

Syntax int RestoreOrigImageData(
CcImage* CImage);

Include File C_Text.h

Description Restores the given image to its original state,
clearing the text placed earlier on the image
by this object.

Parameters

Name:

Description:

CImage

Image to be restored.

Notes When a Text object writes text to an image or
its overlay, the object copies that portion of the
image so that it can be restored. If you need to
restore an image to its original state, call this
method. You place text on an image by calling
CopyTextToImage().

Because a Text object is derived from a
rectangular ROI object, you do not need to call
any methods when moving a Text object
around on an image with the mouse. The
object does this for you, by default.

Return Values

−1 Unsuccessful.

0 Successful.
911

Chapter 27

912
CopyTextToImage

Syntax int CopyTextToImage(
 HWND hChildWindow,
 CcImage* CImage);

Include File C_Text.h

Description Copies the text owned by the Text object to the
given image.

Parameters

Name:

Description:

hChildWindow

Handle to the window in which the given
image is displayed.

Name:

Description:

CImage

Image in which you want to place the text.

Notes Calling this method places the text owned by
the Text object into the image or its overlay.
The text owned by the Text object is initialized
or set by calling AddLineOfText(). You can
remove the text from the image by calling
RestoreOrigImageData().

Because a Text object is derived from a
rectangular ROI object, you need not call any
methods when moving a Text object around
on an image with the mouse. The object does
this for you, by default.

Return Values

−1 Unsuccessful.

0 Successful.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
SetPosition

Syntax int SetPosition(
POINT* stPosition);

Include File C_Text.h

Description Sets the location of the Text object on the
image with respect to pixel coordinates.

Parameters

Name:

Description:

stPosition

Pointer to a Windows POINT structure.

Notes The POINT structure (stPosition) describes the
placement of the Text object on the image. The
point designates the lower-left corner of the
Text object. The x,y coordinates must be given
in pixel coordinates.

The Windows POINT structure is defined as
follows:

{
LONG x;
LONG y;
};

x specifies the x-coordinate of the point;

y specifies the y-coordinate of the point.

For more detail on this structure, see the
Microsoft Win32 SDK.

Because a Text object is derived from a
rectangular ROI object, you need not call any
methods when moving a Text object around
on an image with the mouse. The object does
this for you, by default.
913

Chapter 27

914
GetPosition

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetPosition(
POINT* stPosition);

Include File C_Text.h

Description Returns the location of the Text object on the
image with respect to pixel coordinates.

Parameters

Name:

Description:

stPosition

A pointer to a Windows POINT structure.

Notes The POINT structure (stPosition) describes the
placement of the Text object on the image. The
point designates the lower-left corner of the
Text object. The x,y coordinates must be given
in pixel coordinates.

The Windows POINT structure is defined as
follows:

{
LONG x;
LONG y;
};

x specifies the x-coordinate of the point;

y specifies the y-coordinate of the point.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
ClearAllLinesOfText

Notes (cont.) For more detail on this structure, see the
Microsoft Win32 SDK.

Because a Text object is derived from a
rectangular ROI object, you need not call any
methods when moving a Text object around
on an image with the mouse. The object does
this for you, by default.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ClearAllLinesOfText(void);

Include File C_Text.h

Description Clears all lines of text owned by the Text
object.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can clear all
of the text owned by the Text object by calling
this method.

A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.

Return Values

−1 Unsuccessful.

0 Successful.
915

Chapter 27

916
AddLineOfText

GetLineOfText

Syntax int AddLineOfText(char* cLineOfText);

Include File C_Text.h

Description Adds the given line of text to the Text object.

Parameters

Name:

Description:

cLineOfText

Line of text to add to the Text object.

Notes The Text object keeps the text you add to it by
calling this method internally. It then places
this text in an image or its overlay by calling
CopyTextToImage(). It adds the lines of text
sequentially starting with line 0.

A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax char* GetLineOfText(
int iLineNumber);

Include File C_Text.h

Description Returns the desired line of text owned by the
Text object.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
GetNumberOfLinesOfText

Parameters

Name:

Description:

iLineNumber

Line of text that you want to retrieve. The first
line of text in the Text object is 0.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can retrieve
a specific line of text by calling this method.

A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.

Return Values

NULL Unsuccessful.

The desired line of text. Successful.

Syntax int GetNumberOfLinesOfText(void);

Include File C_Text.h

Description Returns the current number of lines of text
that are used by the Text object.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can retrieve
the number of lines of text currently being
used by the Text object by calling this method.
917

Chapter 27

918
SetDrawTo

Notes (cont.) A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.

Return Values

−1 Unsuccessful.

The number of lines of text
being used by the Text object.

Successful.

Syntax int SetDrawTo(int iDrawToFlag);

Include File C_Text.h

Description Sets the drawing mode of the object.

Parameters

Name:

Description:

iDrawToFlag

Flag to set the drawing mode of the object,
which can be one of the following values:

• SET_ACCESS_TO_IMAGE_DATA − Places
text in the image.

• SET_ACCESS_TO_OVERLAY_DATA −
Places text in the image’s overlay.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can specify
where the text is placed in the image by
calling this method. Text can be placed either
directly in the image or in the image’s
transparent overlay.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
GetDrawTo

Notes (cont.) This is not the x,y location where the text is
placed. For the location use SetPosition().

A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int GetDrawTo(void);

Include File C_Text.h

Description Returns the drawing mode of the object.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can
determine where the text is placed in the
image by calling this method. Text can be
placed either directly in the image or in the
image’s transparent overlay.

This is not the x,y location where the text is
placed. For the location use GetPosition().

A Text object can hold up to 10 lines of code
(lines 0 to 9). Each line can be up to 100
characters.
919

Chapter 27

920
SetColors

Return Values

−1 Unsuccessful.

SET_ACCESS_TO_IMAGE_
DATA

Places text in image.

SET_ACCESS_TO_OVERLAY
_DATA

Places text in image’s overlay.

Syntax int SetColors(
 float fForeground,
 float fBackground);

Include File C_Text.h

Description Sets the foreground (text color) and
background color in which the text is
displayed.

Parameters

Name:

Description:

fForeground

The color of the text.

Name:

Description:

fBackground

The color of the background behind the text.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can specify
in what color the text is shown by calling this
method. It differs if you are showing the text
in the image or in its overlay.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
Notes (cont.) Use one of the following foreground
background values:

• OVERLAY_RED − Transparent red.

• OVERLAY_GREEN − Transparent green.

• OVERLAY_BLUE − Transparent blue.

• OVERLAY_WHITE − Transparent white.

• OVERLAY_YELLOW − Transparent
yellow.

• OVERLAY_VIOLET − Transparent violet.

• OVERLAY_CYAN − Transparent cyan.

• OVERLAY_CLEAR − Clear, nothing is
shown.

• BLACK_TEXT − Solid black.

• BLACK_SEMI_TEXT − Solid semi-black.

• GRAY_DARK_TEXT − Solid dark gray.

• GRAY_TEXT − Solid gray.

• GRAY_LIGHT_TEXT − Solid light gray.

• WHITE_SEMI_TEXT − Solid semi-white.

• WHITE_TEXT − Solid white.

• CLEAR_TEXT − Clear, nothing is shown.

You can also use custom values if you desire.

Return Values

−1 Unsuccessful.

0 Successful.
921

Chapter 27

922
GetColors

Syntax int GetColors(
 float* fForeground,
 float* fBackground);

Include File C_Text.h

Description Returns the foreground (text color) and
background color in which the text is
displayed.

Parameters

Name:

Description:

fForeground

The color of the text.

Name:

Description:

fBackground

The color of the background behind the text.

Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can
determine what color the text is shown in by
calling this method. It differs if you are
showing the text in the image or in its overlay.
It returns one of the following values:

• OVERLAY_RED − Transparent red.

• OVERLAY_GREEN − Transparent green.

• OVERLAY_BLUE − Transparent blue.

• OVERLAY_WHITE − Transparent white.

• OVERLAY_YELLOW − Transparent
yellow.

• OVERLAY_VIOLET − Transparent violet.

Using the Text Tool API

2

2

2

27

27

2

2

2

27
SelectFont

Notes (cont.) • OVERLAY_CYAN − Transparent cyan.

• OVERLAY_CLEAR − Clear, nothing is
shown.

• BLACK_TEXT − Solid black.

• BLACK_SEMI_TEXT − Solid semi-black.

• GRAY_DARK_TEXT − Solid dark gray.

• GRAY_TEXT − Solid gray.

• GRAY_LIGHT_TEXT − Solid light gray.

• WHITE_SEMI_TEXT − Solid semi-white.

• WHITE_TEXT − Solid white.

• CLEAR_TEXT − Clear, nothing is shown.

This method returns a custom value if you
entered a custom value using SetColors().

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int SelectFont(LOGFONT* pLogFont);

Include File C_Text.h

Description Sets the font in which the text is displayed.

Parameters

Name:

Description:

pLogFont

A pointer to a LOGFONT structure that
describes the desired font.
923

Chapter 27

924
Notes The Text object keeps the text you add to it by
calling AddLineOfText() internally. It then
places this text in an image or its overlay by
calling CopyTextToImage(). You can specify
in what font the text is shown by calling this
method. If you leave the pLogFont parameter
NULL, a font selection dialog box is
displayed, which allows you to choose the
desired font. The font you enter here is global
to all Text objects in the system.

The LOGFONT is a Windows SDK structure.
For more information on it, see the Win32
SDK.

Return Values

−1 Unsuccessful.

0 Successful.

28
Using the Threshold Tool API

Overview of the Threshold Tool API. 926

CcThreshold Methods . 927

Example Program Using the Threshold Tool API 935
925

Chapter 28

926
Overview of the Threshold Tool API
The API for the Threshold tool has one object only: the CcThreshold
class. This tool thresholds an input image (derived from class
CcImage) into a binary output image.

The CcThreshold class uses the class methods listed in
Table 45.

Table 45: CcThreshold Object Methods

Method Type Method Name

Constructor and
Destructor
Methods

CcThreshold(void);

~ CcThreshold(void);

CcThreshold
Class Methods

int Threshold(CcImage* CImageIn,
 CcBinaryImage* CImageOut,float fMin,float fMax);

int ThresholdRGB(Cc24BitRGBImage* CImageIn,
 CcBinaryImage* CImageOut,int iRedMin,int iRedMax,
 int iGreenMin,int iGreenMax,int iBlueMin,int iBlueMax);

int ThresholdHSL(Cc24BitRGBImage* CImageIn,
 CcBinaryImage* CImageOut,int iHueMin,int iHueMax,
 int iSatMin,int iSatMax,int iLumMin,int iLumMax);

int ThresholdMulti(CcImage* CImageIn,
 CcBinaryImage* CImageOut,
 STTHRESHOLD* stThreshold, int iNumberOfRegions);

int InvertOutput(BOOL bInvert);

Using the Threshold Tool API

2

2

2

2

28

28

28

2

2

CcThreshold Methods
This section describes each method of the CcThreshold class in detail.

Threshold

Syntax int Threshold(
 CcImage* CImageIn,
 CcBinaryImage* CImageOut,
 float fMin,
 float fMax);

Include File C_Thresh.h

Description Thresholds the given input image into a
binary output image.

Parameters

Name:

Description:

CImageIn

Image that was derived from the CcImage
class.

Name:

Description:

CImageOut

Binary image that was derived from the
CcImage class.

Name:

Description:

fMin

Low threshold limit.

Name:

Description:

fMax

High threshold limit.
927

Chapter 28

928
ThresholdRGB

Notes This method thresholds the entire image; it
does not use an ROI. The input image must
either be a binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, or RGB
color image. The input and output images
must be the same size.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ThresholdRGB(
 Cc24BitRGBImage* CImageIn,
 CcBinaryImage* CImageOut,
 int iRedMin,
 int iRedMax,
 int iGreenMin,
 int iGreenMax,
 int iBlueMin,
 int iBlueMax);

Include File C_Thresh.h

Description Thresholds the given color input image into a
binary output image with respect to all three
color planes of an RGB image.

Parameters

Name:

Description:

CImageIn

RGB color image that was derived from the
CcImage class.

Using the Threshold Tool API

2

2

2

2

28

28

28

2

2

Name:

Description:

CImageOut

Binary image that was derived from the
CcImage class.

Name:

Description:

iRedMin

Low threshold limit for the red color plane of
the color image.

Name:

Description:

iRedMax

High threshold limit for the red color plane of
the color image.

Name:

Description:

iGreenMin

Low threshold limit for the green color plane
of the color image.

Name:

Description:

iGreenMax

High threshold limit for the green color plane
of the color image.

Name:

Description:

iBlueMin

Low threshold limit for the blue color plane of
the color image.

Name:

Description:

iBlueMax

High threshold limit for the blue color plane
of the color image.
929

Chapter 28

930
ThresholdHSL

Notes This method thresholds the entire image; it
does not use an ROI. The input image must be
a 24-bit RGB color image. The input and
output images must be the same size. The
minimum and maximum threshold limits for
each color plane are AND’ed together so that
you can threshold on a very specific color.
Thus, the foreground values in the output
image are the locations where any color pixel
in the input image was within the threshold
limit for all three color planes.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ThresholdHSL(
 Cc24BitHSLImage* CImageIn,
 CcBinaryImage* CImageOut,
 int iHueMin,
 int iHueMax,
 int iSatMin,
 int iSatMax,
 int iLumMin,
 int iLumMax);

Include File C_Thresh.h

Description Thresholds the given color input image into a
binary output image with respect to all three
color planes of an HSL image.

Using the Threshold Tool API

2

2

2

2

28

28

28

2

2

Parameters

Name:

Description:

CImageIn

HSL color image that was derived from the
CcImage class.

Name:

Description:

CImageOut

Binary image that was derived from the
CcImage class.

Name:

Description:

iHueMin

Low threshold limit for the hue color plane of
the color image.

Name:

Description:

iHueMax

High threshold limit for the hue color plane of
the color image.

Name:

Description:

iSatMin

Low threshold limit for the saturation color
plane of the color image.

Name:

Description:

iSatMax

High threshold limit for the saturation color
plane of the color image.

Name:

Description:

iLumMin

Low threshold limit for the luminance color
plane of the color image.

Name:

Description:

iLumMax

High threshold limit for the luminance color
plane of the color image.
931

Chapter 28

932
ThresholdMulti

Notes This method thresholds the entire image; it
does not use an ROI. The input image must be
a 24-bit HSL color image. The input and
output images must be the same size. The
minimum and maximum threshold limits for
each color plane are AND’ed together so that
you can threshold on a very specific color
plane. Thus, the foreground values in the
output image are the locations where any
color pixel in the input image was within the
threshold limit for all three color planes.

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int ThresholdMulti(
 CcImage* CImageIn,
 CcBinaryImage* CImageOut,
 STTHRESHOLD* stThreshold,
 int iNumberOfRegions);

Include File C_Thresh.h

Description Thresholds the given input image into a
binary output image with respect to the given
threshold structure.

Parameters

Name:

Description:

CImageIn

Image that was derived from the CcImage
class.

Using the Threshold Tool API

2

2

2

2

28

28

28

2

2

Name:

Description:

CImageOut

Binary image that was derived from the
CcImage class.

Name:

Description:

stThreshold

Pointer to an array of multiple thresholding
structures.

Name:

Description:

iNumberOfRegions

Size of an array of multiple thresholding
structures.

Notes This method thresholds the entire image; it
does not use an ROI. The input image must be
either an 8-bit grayscale, 32-bit grayscale,
floating-point grayscale, or RGB color image.
The input and output images must be the
same size.

The low and high threshold limits for each
region are OR’ed together. Thus, the
foreground values in the output image are the
locations where any pixel in the input image
was within the threshold limits for any region.
The structure’s iRed, iGreen and iBlue elements
are not used in this method.

The multiple thresholding structure
(STTHRESHOLD) is as follows:

struct STTHRESHOLD {
float fLOThresholdValue;

//High Limit for thresholding
float fHIThresholdValue;
//Low Limit for thresholding
int iRed;
933

Chapter 28

934
InvertOutput

Notes (cont.) //Color of this region
int iGreen;
int iBlue;
};

Return Values

−1 Unsuccessful.

0 Successful.

Syntax int InvertOutput(BOOL bInvert);

Include File C_Thresh.h

Description Determines whether the output image is
inverted.

Parameters

Name:

Description:

bInvert

Flag for inverting the output. It can contain
one of the following values:

• TRUE − Output image is inverted.

• FALSE − Output image is not inverted.

Notes This method determines whether the output
image is inverted the next time Threshold() is
called. By default, the output image is not
inverted.

Return Values

−1 Unsuccessful.

0 Successful.

Using the Threshold Tool API

2

2

2

2

28

28

28

2

2

Example Program Using the Threshold
Tool API

This example program opens an 8-bit image from disk, thresholds it
between the values of 10 and 50, and saves the image to disk:

void SomeFunction(void)
{
/*Start of Dec Section*/
CcGrayImage256 * C8BitImage;
//8-bit grayscale image
CcThreshold* CThresh;
//Thresholding object
/*End of Dec Section*/

//Allocate memory for objects
 C8BitImage = new CcGrayImage256();
 CThresh = new CcThreshold();

//Open image from disk (or get image data from
//frame grabber)
 C8BitImage->OpenBMPFile(“image1.bmp”);

//Perform thresholding (do not invert output)
 CThresh->Threshold(C8BitImage,C8BitImage,10,50);

//Save output to disk
 C8BitImage->SaveBMPFile(“output.bmp”);

//Free memory
 delete C8BitImage; delete CThresh;
}

935

Chapter 28

936

29
Creating DT Vision Foundry

Tools
Introduction. 938

DT Vision Foundry Messages. 940

Example Tool Implementation . 1071

Speeding Up the Execution of a Tool. 1086
937

Chapter 29

938
Introduction
This chapter describes the operation of the DT Vision Foundry tools,
how they communicate with the main application, and how to create
your own custom tools. For further information on the main
application and how it uses tools, refer to the DT Vision Foundry
User’s Manual.

What is a Tool?

The DT Vision Foundry main application does not provide any
analysis, modification, segmentation, or computational functionality
of any type. This functionality is brought to the imaging application
by tools. Tools are independent units that perform specific
operations, such as creating histograms, creating line profiles,
thresholding, filtering, opening and saving various types of file
formats, communicating with imaging hardware, controlling
machinery, accessing databases, and so on.

In programming terms, a tool is a modeless dialog box procedure
wrapped inside of a DLL (dynamically linked library). This dialog
box procedure is simply a user interface to an underlying C/C++
method or set of methods (such as a histogram method).

How a Tool Communicates with the Main
Application

The main application communicates with tools by sending and
receiving standard Windows messages.

When a significant event happens in the main application, such as a
ROI being moved, the main application sends a message to notify all
tools of this event. The tool can then process this message and do
something about the ROI being moved, if desired.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Guidelines for Creating a Tool

If you create your own tool, it is recommended that you follow these
guidelines:

• Keep the user interface of the tool and the functionality of the tool
in separate modules.

This is accomplished by placing the code that performs the actual
operation in a separate class. The dialog box procedure then calls
the class methods to perform the operation. For example, the DT
Vision Foundry package includes an example change tool
(located in C:\Program Files\Data Translation\DT Vision
Foundry\C++ Devel\Examples\Tools\Change, by default) that
contains a user interface to a lower-level change class that
provides the actual functionality of the tool. By keeping the user
interface separate from the code that performs the operation, you
can reuse the same class in your own imaging application and/or
other tools.

• Use only DT Vision Foundry messages to communicate with the
main application.

Experienced Windows programmers may have a desire to use
faster or more direct approaches to communicate with the main
application. However, using nonstandard approaches may lead
to unpredictable results if you include other tools that were
created by someone else.

• Keep the important controls of the tool in the upper-left corner of
the tool.

All tools are resizable. By keeping the most important controls in
the upper-left corner of the tool, you can shrink the tool and still
use it.
939

Chapter 29

940
DT Vision Foundry Messages
All tools communicate with the DT Vision Foundry main application
using a standard set of DT Vision Foundry messages. The following
messages are provided:

• Request messages,

• Notification messages,

• Command messages, and

• Point and click script messages.

When it initializes a tool, the main application creates a handle to
itself and places it in the member variable m_hMainApplication. This
handle is a member variable for all tools. You can use this handle to
query the main application to find its active viewport using the
DT Vision Foundry message HL_GET_ACTIVE_VIEWPORT. The
handle that this message returns is the handle of the active viewport;
it is used in all future request and command messages from the tool
to the main application.

Communication from the tools to the main application is always with
respect to one of the main application’s viewports, usually the active
viewport. A tool can communicate with any viewport using a valid
handle, even if it is not the active viewport. This is the case for tools
that communicate with more than one viewport at a time, such as
those that have an input image and an output image.

This section describes the DT Vision Foundry messages in detail.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Note: All messages are defined in the DT_MGS.H header file,
which is located in C:\Program Files\Data Translation\DT Vision
Foundry\C++ Devel\Include, by default. Structures used by these
messages are defined in the DT_STR.H header file also located in
C:\Program Files\Data Translation\DT Vision Foundry\C++
Devel\Include, by default.

Request Messages

Request messages are sent from a tool to the main application to
request some type of information. For further information on the
returned information, see Chapter 2 starting on page 11.

Before using any request or command message, you must obtain a
valid handle to a viewport in the main application. To do this, query
the main application for its active viewport. Then, place the returned
handle in the provided member variable m_hActiveViewport or in one
of your own variables, as shown in the following example:

//Get Handle to Active Viewport
m_hActiveViewport =

(HWND)::SendMessage(
m_hMainApplication,HL_GET_ACTIVE_VIEWPORT,
0,0L);

All future request messages can then use this or another valid handle.
If you need to communicate with more than one viewport, you must
first obtain a handle to each of the viewports (while each is the active
viewport), and then store these handles in your own variables. Tools
that have an input and output image require this type of storage.

All messages are sent to the main application using the standard
Windows function SendMessage. For more information on the
SendMessage() function, see the Windows SDK API documentation.
941

Chapter 29

942
A request message has the following form:

SendMessage(hViewport,HL_REQUEST,
requested message, 0);

The parameters of the SendMessage() function are as follows:

• hViewport − Handle to the desired viewport (m_hActiveViewport)
from which you are requesting information.

• HL_REQUEST − The request message. This must be
HL_REQUEST for all request messages.

• Requested message − One of the request messages described in
detail in this section.

Note: All DT Vision Foundry request messages start with the
prefix: HLR_.

Request messages are sent from a tool to the main application to
request some type of information. They are never sent from the main
application to a tool or between tools.

The request messages are briefly described in Table 46.

Table 46: Request Messages

Request Message Returned Information Return Type

HLR_SUPPLY_IMAGE_OBJECT The image associated with
the given viewport.

CcImage*

HLR_SUPPLY_IMAGE_OBJECT_
LIST

The entire list of images in
memory.

CcList*

HLR_SUPPLY_ACTIVE_ROI_
OBJECT

The active ROI in the given
viewport.

CcRoiBase*

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

The request messages are described in detail in the remainder of this
section.

HLR_SUPPLY_ROI_OBJECT_
LIST

The list of ROIs for the given
viewport.

CcList*

HLR_SUPPLY_ROI_TYPE ROI creation value type. int

HLR_SUPPLY_VIEWPORTS_
INSTANCE

The instance of the viewport. int

HLR_SUPPLY_VIEWPORT_
VIA_INSTANCE

The handle to the desired
viewport.

HWND

HLR_SUPPLY_VIEWPORT_
VIA_IMAGE

The handle to the desired
viewport.

HWND

HLR_SUPPLY_NEW_VIEWPORT A new viewport handle. HWND

HLR_SUPPLY_CALIBRATION_
OBJECT_LIST

The list of Calibration objects
in the system.

CcList*

HLR_SUPPLY_DEFAULT_
CALIBRATION_OBJECT

The default Calibration object. CcCalibration*

HLR_SUPPLY_VIEWPORT_
ARRAY

An array of handles for all
viewports.

HWND*

HLR_SUPPLY_LIST_BY_NAME A pointer to a specified list. CcList*

HLR_IS_SCRIPT_RUNNING A value of 1 if the script is
running; a value of 0 if the
script is not running.

int

Table 46: Request Messages (cont.)

Request Message Returned Information Return Type
943

Chapter 29

944
HLR_SUPPLY_IMAGE_OBJECT

Syntax CImage =(CcImage*) ::
SendMessage(
hViewport,HL_REQUEST,
HLR_SUPPLY_IMAGE_OBJECT,0);

Include File DT_Msg.h

Description Obtains the Image object that is associated
with the given viewport.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_IMAGE_OBJECT

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_IMAGE_OBJECT_LIST

Notes This message is used to obtain a pointer to the
image that is associated (displayed) in the
given viewport. You must cast the return
value into CcImage* before you can use the
object. This object can be any type of Image
object derived from the CcImage* object base
class. These include binary, 8-bit grayscale,
32-bit grayscale, floating-point grayscale,
24-bit RGB color, and user-defined images.
For more information on these types of image
objects, see Chapter 2 starting on page 11.

If the viewport is not displaying an image,
this message returns NULL.

Return Values

NULL Unsuccessful.

CImage − a pointer to a DT
Vision Foundry Image object

derived from CcImage.

Successful.

Syntax CList =(CcList*) ::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_IMAGE_OBJECT_LIST,0);

Include File DT_Msg.h

Description Obtains the DT Vision Foundry main
application’s list of Image objects.
945

Chapter 29

946
Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_IMAGE_OBJECT_LIST

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes The DT Vision Foundry main application
keeps a list of all Image objects in memory.
You can obtain a pointer to this list by sending
any viewport this message. All viewports
return the same list; there is only one list in the
system. You can then use this list to examine
all the Image objects. Do not add your own
created Image objects to the list or delete
images from the list directly. Instead, use the
command messages
HLC_ADD_IMAGE_OBJECT_TO_LIST and
HLC_DEL_IMAGE_OBJECT_FR_LIST. These
messages notify other tools in the system of
these events.

The Memory Image tool uses this message to
obtain the list of images so that it can display
the list.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_ACTIVE_ROI_OBJECT

Return Values

NULL Unsuccessful.

A pointer to a DT Vision
Foundry CcList object.

Successful.

Syntax CRoi =(CcRoiBase*) ::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_ACTIVE_ROI_OBJECT,
0);

Include File DT_Msg.h

Description Obtains the given viewport’s active ROI.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_ACTIVE_ROI_OBJECT

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.
947

Chapter 29

948
HLR_SUPPLY_ROI_OBJECT_LIST

Notes Each viewport in the DT Vision Foundry main
application can have many ROIs associated
with it. Only one of these ROIs can be active at
a time. This message returns a pointer to the
active ROI object for the given viewport. If the
viewport has no active ROI, this method
returns NULL.

There are two modes of operation in the main
application with respect to ROIs. The ROIs
can be attached to the viewport or to the
image itself. In either case, only one active
ROI can be associated with a viewport. This
message always returns the active ROI and is
transparent to which mode of operation the
main application is in.

The ROI returned is derived from an DT
Vision Foundry CcRoiBase* base class (point,
rectangular, elliptical, line, poly line, freehand
line, poly freehand, or freehand ROI). For
more information on these objects, see
Chapter 2 starting on page 11.

Return Values

NULL Unsuccessful.

A pointer to a DT Vision
Foundry ROI object.

Successful.

Syntax CRoiList =(CcList*) ::
SendMessage(
hViewport,HL_REQUEST,
HLR_SUPPLY_ROI_OBJECT_LIST,0);

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Description Obtains the given viewport’s list of ROI
objects.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_ROI_OBJECT_LIST

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes Each viewport in the DT Vision Foundry main
application contains a list of ROIs. You can
obtain a pointer to this list so that you can use
and analyze the ROIs in this list. You can also
add and delete ROI objects from this list, and
add and delete ROI objects to/from the
viewport’s list using the command messages
HLC_ROI_ADD and HLC_ROI_DELETE.

If you need to add or delete many ROIs from
this list, use the methods of the CcList object.
Make sure that the last ROI added or deleted
from the list using the command messages;
these messages update all tools and
viewports. If you do not add or delete the last
ROI in this manner, the tools and the
viewports are not updated.
949

Chapter 29

950
Notes (cont.) You can add and delete all ROIs to/from the
list using the command messages, but this is
slower than doing it directly. Thus, if you
want to add ten new ROI objects to the list,
add the first nine directly, and add the tenth
ROI using the command message
HLC_ROI_ADD. This is how the Blob
Analysis tool adds and deletes ROIs.

There are two modes of operation in the main
application with respect to ROIs. The ROIs
can be attached to the viewport or to the
image itself. In either case, only one ROI list
can be associated with a viewport at any given
time. This message always returns the correct
ROI list and is transparent to which mode of
operation the main application is in.

The ROI list returned contains all ROIs
associated with the given viewport. It can
contain any combination of point, rectangular,
elliptical, line, poly line, freehand line, poly
freehand, and freehand ROIs. For more
information on these objects, see Chapter 2
starting on page 11.

Return Values

NULL Unsuccessful.

A pointer to a DT Vision
Foundry CcList object.

Successful.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_ROI_TYPE

Syntax iRoiType = (int) ::
SendMessage(
hViewport,HL_REQUEST,
HLR_SUPPLY_ROI_TYPE,0);

Include File DT_Msg.h

Description Obtains the DT Vision Foundry main
application’s ROI creation type.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_ROI_TYPE

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes You must first set the type of ROI to be created
using the menu item Option | ROI Type or the
ROI tool. You can query the main application
to find out the creation type for the ROIs by
using this message.

An ROI type can be one of the following
values:

• ROI_POINT − Point.

• ROI_LINE − Line.
951

Chapter 29

952
HLR_SUPPLY_VIEWPORTS_INSTANCE

Notes (cont.) • ROI_PLINE − Poly Line.

• ROI_FLINE − Freehand Line.

• ROI_RECT − Rectangle.

• ROI_ELLIPSE − Ellipse.

• ROI_FREEHAND − Freehand.

• ROI_PFREEHAND − Poly Freehand.

The ROI tool uses this value to query the main
application for the ROI creation type. You can
then set the ROI’s creation type using the
command message
HLC_SET_ROI_TYPE_TO.

Return Values

−1 Unsuccessful.

The main application’s ROI
creation type.

Successful.

Syntax iViewNumber = (int)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_VIEWPORTS_INSTANCE,
0);

Include File DT_Msg.h

Description Obtains the instance of the given view.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_VIEWPORT_VIA_INSTANCE

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_VIEWPORTS_INSTANCE

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes All viewports in the system have an
associated instance or viewport number. If
you want to know the number of the viewport
you can use this message.

Return Values

−1 Unsuccessful.

The given viewport’s instance. Successful.

Syntax hViewport = (HWND)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_VIEWPORT_VIA_
 INSTANCE,(LPARAM)iInstance);

Include File DT_Msg.h

Description Obtains the viewport with the given instance.
953

Chapter 29

954
HLR_SUPPLY_VIEWPORT_VIA_IMAGE

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_VIEWPORT_VIA_ INSTANCE

Specific type of request message.

Name:

Description:

iInstance

The instance of the viewport for which you
are searching. This is an integer variable.

Notes All viewports in the system have an
associated instance or viewport number. If
you want to know the viewport associated
with a certain instance, you can use this
message.

Return Values

NULL Unsuccessful.

The handle to the viewport for
the given instance.

Successful.

Syntax hViewport = (HWND)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_VIEWPORT_VIA_IMAGE,
(LPARAM)CImage);

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Include File DT_Msg.h

Description Obtains the viewport showing the given
image.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_VIEWPORT_VIA_IMAGE

Specific type of request message.

Name:

Description:

CImage

Pointer to the image who’s viewport you are
requesting.

Notes All viewports in the system can have an
associated image that they are displaying, or
they can be blank. If the image you are
searching for is not being displayed by any
viewport, this message returns NULL. If two
or more viewports are showing the given
image, only one viewport is returned.

Return Values

NULL Unsuccessful.

The handle to the viewport. Successful.
955

Chapter 29

956
HLR_SUPPLY_NEW_VIEWPORT

Syntax hViewport = (HWND)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_NEW_VIEWPORT,0);

Include File DT_Msg.h

Description Creates a new viewport and returns the
handle to it.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_NEW_VIEWPORT

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes This message opens up a new blank viewport.
You can then place an image in it using the
command message
HLC_SET_IMAGE_OBJECT.

Return Values

NULL Unsuccessful.

The handle to the new
viewport.

Successful.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_CALIBRATION_OBJECT_LIST

Syntax CList = (CcList*)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_CALIBRATION_OBJECT_
 LIST,0);

Include File DT_Msg.h

Description Obtains the DT Vision Foundry main
application’s list of Calibration objects.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_CALIBRATION_OBJECT_
 LIST

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Notes All Calibration objects in the system are held
in a single list. Use this message to obtain a
pointer to this list. The list is a CcList object.
For more information seeChapter 2 starting
on page 11.
957

Chapter 29

958
HLR_SUPPLY_DEFAULT_CALIBRATION_OBJECT

Return Values

NULL Unsuccessful.

A pointer to the Calibration
object list.

Successful.

Syntax CCal = (CcCalibration*)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_DEFAULT_CALIBRATION_
 OBJECT,0);

Include File DT_Msg.h

Description Obtains the default Calibration object for the
system from the main application.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_DEFAULT_CALIBRATION_
OBJECT

Specific type of request message.

Name:

Description:

0

This request message does not require any
parameter for lParam.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2
HLR_SUPPLY_VIEWPORT_ARRAY

Notes All files opened from disk use the default
Calibration object for converting pixel
measurements to real-world measurements.
To get a pointer to this default Calibration
object, use this message.

Return Values

NULL Unsuccessful.

A pointer to the default
Calibration object.

Successful.

Syntax phViewportArray = (HWND*)::
SendMessage(hViewport,
HL_REQUEST,
HLR_SUPPLY_VIEWPORT_ARRAY,
LPARAM)&iNumOfViewports);

Include File DT_Msg.h

Description Obtains a list of all open viewports from the
main application.

Parameters

Name:

Description:

hViewport

Viewport from which you are requesting the
information. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_VIEWPORT_ARRAY

Specific type of request message.
959

Chapter 29

960
Name:

Description:

iNumOfViewports

Pointer to a user-defined integer to hold the
number of viewports returned in the array.

Notes It may be desirable to work on all viewports at
one time. You can obtain a list of all open
viewports at one time using this method.

Return Values

NULL Unsuccessful.

A pointer to an array of
viewports.

Successful.

Example The following is example gets the list of all
open viewports and sends each a message to
restore them.

//EXAMPLE OF USING THE VIEWPORT
//ARRAY
void CcDTTool::OnRestoreAll()
{
int x,iNumOfViewports;
HWND* phViewportArray;
//Get Viewport Array
phViewportArray = (HWND*)::

SendMessage(m_hActiveViewport,
HL_REQUEST,
HLR_SUPPLY_VIEWPORT_ARRAY,
(LPARAM)&iNumOfViewports);

if(phViewportArray == NULL)
return;

//Restore All Viewports
for(x=0; x<iNumOfViewports; x++)

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLR_SUPPLY_LIST_BY_NAME

Example (cont.) {
::SendMessage(

phViewportArray[x],HL_COMMAND,
 HLC_MANAGE_VIEWPORT,

(LPARAM)SW_RESTORE); }
)

Syntax CcList *pCList = (CcList*)::
SendMessage(m_hActiveViewport,
HL_REQUEST,
HLR_SUPPLY_LIST_BY_NAME,
LPARAM)cString);

Include File DT_Msg.h

Description Retrieves a pointer to a specified list based on
its name.

Parameters

Name:

Description:

m_hActiveViewport

The active viewport from which you are
requesting the information.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_SUPPLY_LIST_BY_NAME

Specific type of request message.

Name:

Description:

cString

The name of the specified list (such as number
or string).

Notes None
961

Chapter 29

962
HLR_IS_SCRIPT_RUNNING

Return Values

pCList A pointer to a list.

Syntax int iIsRunning = (int)::
SendMessage(m_hActiveViewport,
HL_REQUEST,
HLR_IS_SCRIPT_RUNNING, 0);

Include File DT_Msg.h

Description Determines whether or not the specified script
is running.

Parameters

Name:

Description:

m_hActiveViewport

The active viewport from which you are
requesting the information.

Name:

Description:

HL_REQUEST

Required for all request messages.

Name:

Description:

HLR_IS_SCRIPT_RUNNING

Specific type of request message.

Name:

Description:

0

No information is needed for this message.

Notes None

Return Values

iIsRunning A value of 1 if the script is running; a value of
0 if the script is not running.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Notification Messages

Notification messages are sent from the main application to all open
tools when a significant event happens in the main application;
notification messages notify the tools of the event. They are never
sent from the tools to the main application or between tools. You do
not need to return anything to the main application. A tool does not
have to process any of these messages. Your tool should process only
the messages that make sense for its operation.

All notification messages are sent from the main application to all
open tools using the standard Windows SendMessage function. The
syntax is as follows:

SendMessage(hTool, HL_NOTIFY,specific notification
message, message specific information)

Information about the event is often contained in the lParam
parameter of the message. For further information on the contained
information, see Chapter 2 starting on page 11.

All notification messages are processed in a tool by processing the
HL_NOTIFY message sent by the main application. This message
map is already set up to map to the HLNotify() message handler in
the example change tool (located in C:\Program Files\Data
Translation\DT Vision Foundry\C++ Devel\Examples\Tools\
Change, by default). Thus, all notification messages should be
processed in the switch statement of the HLNotify() message
handler. You can process none, all, or some of the notification
messages in the switch statement. Which notification messages you
process is determined by the desired functionality of your tool.

The following example shows starting code for this event handler
and the notification messages HLN_NEW_IMAGE_OBJECT and
HLN_VIEWPORT_ACTIVATED:
963

Chapter 29

964
//************* H L N O T I F Y *****************//
LRESULT CcDTTool::HLNotify(WPARAM wParam,

LPARAM lParam)
{
/*Start of Dec Section*/
/*End of Dec Section*/

switch(wParam)
{

case HLN_NEW_IMAGE_OBJECT:
(process this message here)
return(TRUE);
break;
case HLN_VIEWPORT_ACTIVATED:
(process this message here)
return(TRUE);
break;

}
return(TRUE);

}
//*********** H L N O T I F Y *******************//

Note: All DT Vision Foundry notification messages start with the
prefix HLN_.

The notification messages are briefly described in Table 47.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Table 47: Notification Messages

Specific Notification Message Description of Message

HLN_NEW_IMAGE_OBJECT A new image has been added to the main
application’s image list. A pointer to the
image that was added is given in lParam.

HLN_DELETED_IMAGE_OBJECT An image has been deleted from the main
application’s image list. A pointer to the
image that was deleted is given in lParam.

HLN_DELETING_IMAGE_OBJECT An image is about to be deleted from the
main application’s image list. A pointer to the
image to be deleted is given in lParam.

HLN_ROI_TYPE_CHANGE The ROI creation type has changed in the
main application. The new ROI type is given
in lParam.

HLN_ROI_CREATED An ROI has been created in the main
application. A pointer to the ROI object is
given in lParam.

HLN_DELETED_ROI_OBJECT An ROI was deleted in the main application.
A pointer to the deleted ROI object is given in
lParam.

HLN_DELETING_ROI_OBJECT An ROI is about to be deleted in the main
application. A pointer to the ROI to be
deleted is given in lParam.

HLN_ROI_ACTIVATED An ROI has become activated in the main
application. A pointer to the activated ROI
object is given in lParam.

HLN_ROI_COPIED An ROI has been created (or is being
created) by copying another ROI. A pointer to
the newly created (copied) ROI is given in
lParam.

HLN_ROI_MOVED An ROI is being moved in the main
application. A pointer to the ROI is given in
lParam.
965

Chapter 29

966
HLN_ROI_RESIZED An ROI has been drawn with the mouse
(created) in the main application. The user is
currently resizing the ROI. A pointer to the
ROI is given in lParam.

HLN_MOUSEMOVE The mouse is moving in the main application.
A pointer to a structure describing the mouse
is given in lParam.

HLN_LBUTTONDOWN The user has depressed the left mouse
button in the main application. A pointer to a
structure describing the mouse is given in
lParam.

HLN_LBUTTONUP The user has released the left mouse button
in the main application. A pointer to a
structure describing the mouse is given in
lParam.

HLN_RBUTTONDOWN The user has depressed the right mouse
button in the main application. A pointer to a
structure describing the mouse is given in
lParam.

HLN_RBUTTONUP The user has released the right mouse
button in the main application. A pointer to a
structure describing the mouse is given in
lParam.

HLN_LBUTTONDBLCLK The user has double-clicked the left mouse
button in the main application. A pointer to a
structure describing the mouse is given in
lParam.

HLN_RBUTTONDBLCLK The user has double-clicked the right mouse
button in the main application. A pointer to a
structure describing the mouse is given in
lParam.

Table 47: Notification Messages (cont.)

Specific Notification Message Description of Message

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

The notification messages are described in detail in the remainder of
this section.

HLN_VIEWPORTS_IMAGE_
CHANGED

An image in a viewport has been redrawn
(usually as a result of a tool changing the
image’s data). A pointer to the image is given
in lParam.

HLN_VIEWPORT_ACTIVATED A different viewport has become the active
viewport. A handle to the activated viewport
is given in lParam.

HLN_VIEWPORT_DEACTIVATED The active viewport has been deactivated
(because another viewport is now the active
viewport). A handle to the deactivated
viewport is given in lParam.

HLN_OBJECT_NAME_CHANGED An object has had its name changed. A
pointer to the object is given in lParam.

HLN_NEW_CALIBRATION_OBJECT A new Calibration object has been added to
the system. A pointer to the new object is
given in lParam.

HLN_DELETED_CALIBRATION_
OBJECT

A Calibration object has been deleted. A
pointer to the object that has been deleted is
given in lParam.

HLN_DELETING_CALIBRATION_
OBJECT

A Calibration object is about to be deleted. A
pointer to the object to be deleted is given in
lParam.

HLN_DEFAULT_CALIBRATION_
OBJECT_CHANGED

The default Calibration object has changed.
A pointer to the new default Calibration object
is given in lParam.

HLN_SCRIPT_RUNNING A point and click script has been activated or
run.

HLN_LIST_CHANGED One of the internal lists (such as number,
string, or roi) has been updated.

Table 47: Notification Messages (cont.)

Specific Notification Message Description of Message
967

Chapter 29

968
HLN_NEW_IMAGE_OBJECT

Syntax //******* H L N O T I F Y ******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_NEW_IMAGE_OBJECT:
CcImage* CImage =

(CcImage*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y ********//

Include File DT_Msg.h

Description Notifies a tool that a new image has been
added to the main application’s image list.

Parameters

Name:

Description:

CcImage *

A pointer to the image that was added to the
main application’s image list is contained in
the lParam of the message.

Notes When a new image is created (from taking a
picture using a picture tool or from opening
an image from disk) and is added to the main
application’s image list, this message is sent.
The image that was added to the list is
contained in the lParam parameter of the
message. You can obtain and use this pointer
by casting lParam to a CcImage* pointer.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_DELETED_IMAGE_OBJECT

Notes (cont.) This message is always sent after an image is
added to the image list using the command
message
HLC_ADD_IMAGE_OBJECT_TO_LIST.

Syntax //******** H L N O T I F Y *****//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_DELETED_IMAGE_OBJECT:
CcImage* CImage = (

CcImage*)lParam;
(stop using this image, DO NOT USE

THE POINTER TO THE IMAGE!)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that an image has been deleted
from the main application’s image list.

Parameters

Name:

Description:

CcImage *

A pointer to the image that was deleted from
the main application’s image list is contained
in the lParam parameter of the message.
969

Chapter 29

970
Notes When an image is deleted, the image is
removed from the main application’s image
list. A tool may be using this image using its
pointer. All tools that store pointers to images
for usage should check this message to make
sure that the images they are using have not
been deleted. When a tool receives this
message, it can check its images against the
deleted image pointer given in lParam; it must
not use the deleted image using its pointer
(because the image has already been deleted
when the tool gets this message).

This message is always sent after an image
has been deleted from the image list using the
command message
HLC_DEL_IMAGE_OBJECT_FR_LIST. Never
directly delete an image that is contained in
the main application’s image list; use this
message so that other tools know that the
image has been deleted. If your tool was
responsible for creating an image (and the
image was never attached to the main
application’s image list), you can delete the
image directly (this is because no other tools
should be using the image).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_DELETING_IMAGE_OBJECT

Syntax //******** H L N O T I F Y *****//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_DELETING_IMAGE_OBJECT:
CcImage* CImage = (

CcImage*)lParam;
(stop using this image, YOU CAN

USE THE POINTER TO THE IMAGE!)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that an image will be deleted
from the main application’s image list.

Parameters

Name:

Description:

CcImage *

A pointer to the image that is being deleted
from the main application’s image list is
contained in the lParam parameter of the
message.
971

Chapter 29

972
Notes When an image is deleted, the image is
removed from the main application’s image
list. A tool may be using this same image
using its pointer. All tools that store pointers
to images for usage should check this message
to make sure that the images they are using
have not been deleted. When it receives this
message, a tool can do any clean up what it
needs to using the image given in lParam.

This message is always sent out before an
image has been deleted from the image list
using the command message
HLC_DEL_IMAGE_OBJECT_FR_LIST. Never
directly delete an image that is contained in
the main application’s image list; use this
message to inform other tools that the image
has been deleted. If your tool was responsible
for creating an image (and the image was
never attached to the main application’s
image list), you can delete the image directly
(this is because no other tools should be using
the image).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_ROI_TYPE_CHANGE

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_TYPE_CHANGE:
int iType = (int)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that the ROI creation type has
changed.

Parameters

Name:

Description:

int

A new ROI creation type variable is given in
lParam.

Notes When you create an ROI in the main
application, you must first set the type of ROI
to be created. An integer variable describing
the new type is given in lParam.

This message is generated when you change
the ROI creation type using the main
application’s menu item Option | ROI Type, the
ROI bar, the ROI tool, or the command
message HLC_SET_ROI_TYPE_TO.
973

Chapter 29

974
HLN_ROI_CREATED

Notes (cont.) This type can be one of the following values:

• ROI_POINT

• ROI_LINE

• ROI_FLINE

• ROI_PLINE

• ROI_RECT

• ROI_ELLIPSE

• ROI_FREEHAND

• ROI_PFREEHAND

Syntax //******** H L N O T I F Y*****//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_CREATED:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that an ROI has been created.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_DELETED_ROI_OBJECT

Parameters

Name:

Description:

CcRoiBase *

A pointer to the created ROI that is given in
lParam.

Notes When you create an ROI in the main
application, the main application sends out
this message. This message is also generated
when a tool creates an ROI and adds the ROI
to a viewport’s list of ROIs using the
command message HLC_ROI_ADD. A
pointer to the newly created ROI is given in
lParam.

Syntax //*****H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_DELETED_ROI_OBJECT:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message accordingly...,

DO NOT USE THE POINTER TO THE
ROI!)

return(TRUE);
}
return(TRUE);
}
//**** H L N O T I F Y ********//

Include File DT_Msg.h
975

Chapter 29

976
HLN_DELETING_ROI_OBJECT

Description Notifies a tool that an ROI has been deleted.

Parameters

Name:

Description:

CcRoiBase *

Pointer to the deleted ROI that is given in
lParam.

Notes When you delete an ROI in the main
application, the main application sends out
this message. This message is also generated
when a tool deletes a ROI from a viewport’s
list of ROIs using the command message
HLC_ROI_DELETE. A pointer to the deleted
ROI is given in lParam. At this point the ROI
object has already been deleted; you cannot
use the pointer to the deleted object.

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_DELETING_ROI_OBJECT:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message

accordingly...,YOU CAN USE THE
POINTER TO THE ROI!)

return(TRUE);
}
return(TRUE);
}
//****** H L N O T I F Y *******//

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_ROI_ACTIVATED

Include File DT_Msg.h

Description Notifies a tool that a ROI is being deleted.

Parameters

Name:

Description:

CcRoiBase *

A pointer to the ROI to be deleted is given in
lParam.

Notes When you delete an ROI in the main
application, the main application sends this
message. This message is also generated when
a tool deletes an ROI from a viewport’s list of
ROIs using the command message
HLC_ROI_DELETE. A pointer to the deleted
ROI is given in lParam. At this point, the ROI
object can still be used because its object has
not yet been deleted.

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_ACTIVATED:
CcRoiBase* CRoi =

(CcRoiBase*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y ********//
977

Chapter 29

978
HLN_ROI_COPIED

Include File DT_Msg.h

Description Notifies a tool that an ROI has been activated.

Parameters

Name:

Description:

CcRoiBase *

A pointer to the activated ROI is given in
lParam.

Notes When a user activates an ROI in the main
application, the main application sends this
message. A pointer to the activated ROI is
given in lParam.

Syntax /**** H L N O T I F Y *********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_COPIED:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y ********//

Include File DT_Msg.h

Description Notifies a tool that a new ROI has been
created by copying an existing ROI.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_ROI_MOVED

Parameters

Name:

Description:

CcRoiBase *

A pointer to the new ROI is given in lParam.

Notes When a user copies an ROI in the main
application, the main application sends this
message. A pointer to the new ROI is given in
lParam.

Syntax //******* H L N O T I F Y ******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_MOVED:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that an ROI is being moved
and/or resized.

Parameters

Name:

Description:

CcRoiBase *

A pointer to the ROI that is being
moved/resized is given in lParam.
979

Chapter 29

980
HLN_ROI_RESIZED

Notes When you move or resize an ROI in the main
application, the main application sends this
message. A pointer to the ROI is given in
lParam.

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_ROI_RESIZED:
CcRoiBase* CRoi = (

CcRoiBase*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y ********//

Include File Include DT_Msg.h

Description Notifies a tool that an ROI is being resized.

Parameters

Name:

Description:

CcRoiBase *

A pointer to the ROI that is being resized is
given in lParam.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_MOUSEMOVE

Notes While an ROI is being created using the
mouse in the main application, the main
application sends this message every time the
you resize the ROI. This is sent only during
the creation stage of an ROI. If you want to
know when an ROI is being resized after it has
been created, use the HLN_ROI_MOVED
notification message.

Syntax //******* H L N O T I F Y ******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_MOUSEMOVE:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);

}
return(TRUE);
}
//******** H L N O T I F Y *****//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the mouse is being moved
within a viewport in the main application.
981

Chapter 29

982
Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_LBUTTON − Set if the left mouse
button is down.

• MK_RBUTTON − Set if the right mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

vpCImage

A pointer to the image associated with the
viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes When the mouse is moved within a viewport
(does not have to be the active viewport), the
main application sends this message. If you
choose to process this message, do so quickly.
If you take too long to process this message, a
jerky response is added to the overall
application.

The Pixel Analysis tool uses this message. Its
processing time is short and performs its
functionality only when the left button of the
mouse is depressed. It is a good idea to
perform your functionality only if some type
of key-mouse button combination is activated
instead of processing on every mouse move.
This allows you to keep your tool open, but
activate the tool only when a specific
key-mouse button combination is activated.
983

Chapter 29

984
HLN_LBUTTONDOWN

Syntax //*** H L N O T I F Y **********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_LBUTTONDOWN:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the left mouse button has
been depressed within a viewport in the main
application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_RBUTTON − Set if the right mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT− Set if the SHIFT key is down.

Name:

Description:

vpCImage

Pointer to the image associated with the
viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you depress the left
mouse button in an open viewport in the main
application.
985

Chapter 29

986
HLN_LBUTTONUP

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_LBUTTONUP:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the left mouse button has
been released within a viewport in the main
application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_RBUTTON − Set if the right mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Name:

Description:

vpCImage

A pointer to the image that is associated with
the viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you release the left
mouse button within a viewport in the main
application.
987

Chapter 29

988
HLN_RBUTTONDOWN

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_RBUTTONDOWN:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the right mouse button has
been depressed within a viewport in the main
application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_LBUTTON − Set if the left mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Name:

Description:

vpCImage

A pointer to the image associated with the
viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you depress the
right mouse button within a viewport in the
main application.
989

Chapter 29

990
HLN_RBUTTONUP

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_RBUTTONUP:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y *******//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the right mouse button has
been released within a viewport in the main
application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_LBUTTON − Set if the left mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Name:

Description:

vpCImage

A pointer to the image that is associated with
the viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you release the
right mouse button within a viewport in the
main application.
991

Chapter 29

992
HLN_LBUTTONDBLCLK

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_LBUTTONDBLCLK:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//*** H L N O T I F Y **********//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the left mouse button has
been double-clicked within a viewport in the
main application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_RBUTTON − Set if the right mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Name:

Description:

vpCImage

A pointer to the image associated with the
viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you double-click
the left mouse button within a viewport in the
main application.
993

Chapter 29

994
HLN_RBUTTONDBLCLK

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_RBUTTONDBLCLK:
STMOUSEMOVE* stMouse = (

STMOUSEMOVE*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Str.h

DT_Msg.h

Description Notifies a tool that the right mouse button has
been double-clicked within a viewport in the
main application.

Parameters

Name:

Description:

STMOUSEMOVE *

A pointer to a structure describing the mouse
information is given in lParam.

Name:

Description:

stMousePoint

A POINT structure describing the x,y-location
of the mouse cursor in the viewport (in image
coordinates).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

stSubMousePoint

An STPOINTs structure describing the
x,y-location of the mouse cursor in the
viewport (in sub-pixel image coordinates).

Name:

Description:

nFlags

Windows SDK flags given with the
WM_MOUSE_MOVE message. Indicates
whether various virtual keys are down. This
parameter can be any combination of the
following values:

• MK_CONTROL − Set if the CTRL key is
down.

• MK_LBUTTON − Set if the left mouse
button is down.

• MK_MBUTTON − Set if the middle mouse
button is down.

• MK_SHIFT − Set if the SHIFT key is down.

Name:

Description:

vpCImage

A pointer to the image associated with the
viewport that the mouse is in.

Name:

Description:

hWnd

Handle to the viewport that the mouse is in.

Notes This message is sent when you double-click
the right mouse button within a viewport in
the main application.
995

Chapter 29

996
HLN_VIEWPORTS_IMAGE_CHANGED

Syntax //** H L N O T I F Y ***********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_VIEWPORTS_IMAGE_CHANGED:
CcImage* CImage = (

CcImage*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******** H L N O T I F Y *****//

Include File DT_Msg.h

Description Notifies a tool that an image has been
changed.

Parameters

Name:

Description:

CcImage*

A pointer to the image that has been changed
is given in lParam.

Notes When a tool changes an image (such as the
Filter tool), the tool commands the main
application to redraw the image to reflect the
change using the command message
HLC_REDRAW_VIEW. When this happens,
this message is sent. There is no viewport
associated with this message because a single
image can be displayed in multiple viewports.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_VIEWPORT_ACTIVATED

Syntax //***** H L N O T I F Y ********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_VIEWPORT_ACTIVATED:
HWND hViewport = (HWND)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that a viewport has become
activated.

Parameters

Name:

Description:

HWND

A handle to the activated viewport is given in
lParam.

Notes This message is sent when a viewport
becomes activated by clicking in it with the
left mouse button. If an active viewport
already exists, the viewport is deactivated and
the HLN_VIEWPORT_DEACTIVATED
notification message is sent.
997

Chapter 29

998
HLN_VIEWPORT_DEACTIVATED

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_VIEWPORT_DEACTIVATED:
HWND hViewport = (HWND)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h

Description Notifies a tool that a viewport has become
deactivated.

Parameters

Name:

Description:

HWND

A handle to the deactivated viewport is given
in lParam.

Notes When a viewport becomes activated by
clicking in it with the left mouse button, the
previous active viewport becomes deactivated
(it is no longer the active viewport). When this
happens, this message is sent. The newly
activated viewport sends a
HLN_VIEWPORT_ACTIVATED message
letting the tools know which viewport is the
active viewport.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_OBJECT_NAME_CHANGED

Syntax //****** H L N O T I F Y *******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_OBJECT_NAME_CHANGED:
CcHLObject* CHLObject = (

CcHLObject*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******** H L N O T I F Y *****//

Include File DT_Msg.h

Description Notifies a tool that an object’s name has been
changed.

Parameters

Name:

Description:

CcHLObject*

A pointer to the object whose name has
changed is given in lParam.

Notes When a tool (such as the Memory Images tool)
changes an object’s name, the tool must
command the main application to notify the
tools using the command message
HLC_SEND_NAME_CHANGE_NOTIFICATI
ON. When this happens, this message is sent.
A pointer to the object that has had its name
changed is given in lParam.
999

Chapter 29

1000
HLN_NEW_CALIBRATION_OBJECT

Syntax //******* H L N O T I F Y ******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_NEW_CALIBRATION_OBJECT:
CcCalibration* CCal = (

CcCalibration*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//**** H L N O T I F Y ********//

Include File DT_Msg.h

Description Notifies a tool that a new Calibration object
has been added to the main application’s
Calibration object list.

Parameters

Name:

Description:

CcCalibration*

A pointer to the new Calibration object is
given in lParam.

Notes When a tool (such as the Calibration tool)
adds a new Calibration object to the system it
does so by using the command message
HLC_ADD_CALIBRATION_OBJECT_TO_
LIST; then, this message is sent. A pointer to
the object that has had its name changed is
given in lParam.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_DELETED_CALIBRATION_OBJECT

Syntax //**** H L N O T I F Y *********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case

HLN_DELETED_CALIBRATION_OBJECT:
CcCalibration* CCal = (

CcCalibration*)lParam;
(process message accordingly..,DO

NOT USE THE POINTER TO THE
OBJECT!)

return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y ********//

Include File DT_Msg.h

Description Notifies a tool that a Calibration object has
been deleted from the main application’s
Calibration object list.

Parameters

Name:

Description:

CcCalibration*

A pointer to the Calibration object that has
been deleted.
1001

Chapter 29

1002
HLN_DELETING_CALIBRATION_OBJECT

Notes When a tool (such as the Calibration tool)
deletes a Calibration object from the system it
does so by using the command message
HLC_DEL_CALIBRATION_OBJECT_FR_
LIS; then, this message is sent. A pointer to the
object that has been deleted is given in lParam.
You cannot use the pointer to the Calibration
object because it has already been deleted.

Syntax //**** H L N O T I F Y *********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case

HLN_DELETING_CALIBRATION_OBJECT
:

CcCalibration* CCal = (
CcCalibration*)lParam;

(process message accordingly, YOU
CAN USE THE POINTER TO THE
OBJECT!)

return(TRUE);
}
return(TRUE);
}
//***** H L N O T I F Y *******//

Include File DT_Msg.h

Description Notifies a tool that a Calibration object will be
deleted from the main application’s
Calibration object list.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_DEFAULT_CALIBRATION_OBJECT_
CHANGED

Parameters

Name:

Description:

CcCalibration*

A pointer to the Calibration object to be
deleted.

Notes When a tool (such as the Calibration tool)
deletes a Calibration object from the system, it
does so using the command message
HLC_DEL_CALIBRATION_OBJECT_FR_
LIST; then, this message is sent. A pointer to
the object to be deleted is given in lParam. You
can use the pointer to the Calibration object
because it has not been deleted yet.

Syntax //******* H L N O T I F Y ******//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case

HLN_DEFAULT_CALIBRATION_OBJECT_
CHANGED:

CcCalibration* CCal = (
CcCalibration*)lParam;

(process message accordingly...
return(TRUE);
}
return(TRUE);
}
//******* H L N O T I F Y ******//

Include File DT_Msg.h
1003

Chapter 29

1004
HLN_SCRIPT_RUNNING

Description Notifies a tool that the default Calibration
object has changed to a new Calibration
object.

Parameters

Name:

Description:

CcCalibration*

A pointer to the new default Calibration
object.

Notes When an image is opened from disk and is the
correct size, the image uses the default
Calibration object to calculate all of its
measurements. If this default Calibration
object changes as a result of a tool using the
command message
HLC_SET_DEFAULT_CALIBRATION_
OBJECT, this message is sent.

Syntax //** H L N O T I F Y ***********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_SCRIPT_RUNNING:
BOOL bRunning = (BOOL)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******** H L N O T I F Y *****//

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLN_LIST_CHANGED

Description Notifies every tool that is referenced by the
Point and Click Script tool that a point and
click script has been activated or run.

Parameters

Name:

Description:

BOOL

Boolean variable. If TRUE, the script is
running; if FALSE, the script is not running.

Notes None

Syntax //** H L N O T I F Y ***********//
LRESULT CcDTTool::HLNotify(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLN_LIST_CHANGED:
char* pListName = (char*)lParam;
(process message accordingly...)
return(TRUE);
}
return(TRUE);
}
//******** H L N O T I F Y *****//

Include File DT_Msg.h

Description Notifies all active tools that one of the internal
lists (such as the number, string, or roi) has
been updated.
1005

Chapter 29

1006
Command Messages

Command messages are sent from a tool to the main application to
instruct it to perform some type of action. They are never sent from
the main application to a tool or between tools. For further
information on the command parameter information, see Chapter 2
starting on page 11. Command messages are sent to the main
application the same way as request messages.

Before using any request or command message, obtain a valid handle
to a viewport in the main application by querying the main
application for its active viewport. Then, place the returned handle in
the provided member variable m_hActiveViewport or in one of your
own variables, as shown in the following code:

//Get Handle to Active Viewport
m_hActiveViewport = (HWND)::SendMessage(

m_hMainApplication,HL_GET_ACTIVE_VIEWPORT,0,0L);

All future command messages then use this or another valid handle.
If you need to communicate with more than one viewport, you must
first obtain a handle to each viewport (while each is the active
viewport), and then store these handles in your own variables. Tools
that have an input and output image require this type of storage.

Parameters

Name:

Description:

char*

A pointer to a string which holds the name of
the list that was modified.

Notes The tools can synchronize their GUIs with the
changes to the internal lists once they receive
this notification message.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

All command messages are sent to the main application using the
SDK SendMessage() function. For more information on
SendMessage(), see the Windows SDK API documentation. All
command messages must have the message parameter of the
Windows SDK SendMessage() set to HL_COMMAND. Command
messages have no return value.

A command message has the following form:

SendMessage(hViewport,HL_COMMAND, command message,
command information);

The parameters of the SendMessage() function are as follows:

• hViewport − Handle to the desired viewport (m_hActiveViewport)
to which you are sending the command.

• HL_COMMAND − The command message.

• Command message − One of the command messages described in
detail in this section.

• Command information − Needed information so that the main
application can perform the command.

Note: All DT Vision Foundry command messages start with the
prefix: HLC_.

The command messages are briefly described in Table 48.
1007

Chapter 29

1008
Table 48: Command Messages

Command Message Description of Message

HLC_FILE_OPEN Opens the given BMP file and places the
full path name of the BMP file to open in
lParam.

HLC_FILE_SAVE Saves the image in the given viewport as
the full path name given in lParam.

HLC_SIZE_IMAGE_TO_WINDOW Shows the image in the given viewport by
stretching the image to fit within the
viewport without changing the size of the
viewport. Note that this message does
not keep the aspect ratio of the image.

HLC_SIZE_IMAGE_AS_ACTUAL Shows the image in the given viewport in
its actual size. If the image is too big to fit
in the viewport, scrollbars are added to
the viewport. Note that this message
does not change the size of the viewport,
but does keep the aspect ratio of the
image.

HLC_SIZE_WINDOW_TO_IMAGE Shows the image in the given viewport in
its actual size. If the image is larger than
the current viewport, the viewport is
resized to fit the entire size of the image.
The aspect ratio of the image is kept.

HLC_ADD_IMAGE_OBJECT_TO_
LIST

Adds the Image object given in lParam to
the main application’s image list.

HLC_DEL_IMAGE_OBJECT_FR_
LIST

Deletes the Image object given in lParam
from the main application’s image list.
Note that this message deletes the Image
object for you. You do not need to delete
the Image object again.

HLC_SET_IMAGE_OBJECT Associates the Image object given in
lParam with the given viewport. The
viewport then displays the given image.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_CLEAR_IMAGE_OBJECT Clears all viewports from their associated
image if they are using the image given in
lParam. The viewport no longer has an
image associated with it. This message is
usually called when an image is deleted
from memory.

HLC_REDRAW_IMAGE_
OVERLAY

Redraws the image overlay being shown
in the given viewport without redrawing
the image.

HLC_REDRAW_VIEW Redraws the image associated with the
given viewport. This message is usually
called after a tool changes the image
shown in a viewport (the output image of
a tool).

HLC_SET_LOGICAL_PALETTE_
TO

Redraws the image in the given viewport
using the given color palette in lParam.

HLC_SHOW_PIXEL_GROUPING Shows a group of pixels given in lParam
in the given viewport. The pixels are
described in a PIXELGROUPING
structure. This is a nondestructive method
of drawing on the viewport’s associated
image in color.

HLC_ADD_CALIBRATION_
OBJECT_TO_LIST

Adds a Calibration object to the list of
Calibration objects in the system.

HLC_DEL_CALIBRATION_
OBJECT_FR_LIST

Deletes a Calibration object from the list
of Calibration objects in the system.

HLC_SET_DEFAULT_
CALIBRATION_OBJECT

Sets the given Calibration object as the
default Calibration object.

HLC_ACTIVATE_ROI Activates the given ROI in the given
viewport.

HLC_ROI_DELETE_ALL Deletes all the ROIs in the given viewport.

Table 48: Command Messages (cont.)

Command Message Description of Message
1009

Chapter 29

1010
HLC_SET_ROI_TYPE_TO Sets the ROI creation type in the main
application.

HLC_SET_ROI_MODE_TO Sets the ROI drawing mode in the main
application.

HLC_ROI_ADD Adds the ROI given in lParam to the given
viewport.

HLC_ROI_DELETE Deletes the ROI given in lParam from the
given viewport.

HLC_SEND_NAME_CHANGE_
NOTIFICATION

Instructs the main application to send a
notification name change message to all
open tools. The object whose name has
changed is placed in lParam.

HLC_MANAGE_VIEWPORT Controls a viewport’s restore, minimize,
and maximize functionality.

HLC_MANAGE_MAINAPP Controls the main application’s restore,
minimize, and maximize functionality.

HLC_POSITION_VIEWPORT Positions and sizes a viewport.

HLC_POSITION_MAINAPP Positions and sizes the main application.

HLC_ARRANGE_VIEWPORTS Arranges all viewports with respect to tile
vertical, tile horizontal, cascade, and
arrange icons.

HLC_CLOSE_VIEWPORT Closes the given viewport.

HLC_ACTIVATE_VIEWPORT Activates the given viewport.

Table 48: Command Messages (cont.)

Command Message Description of Message

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

The command messages are described in detail in the remainder of
this section.

HLC_FILE_OPEN

HLC_ADD_LIST_TO_MAIN_LIST Adds a user-defined list to the main object
list.

HLC_SEND_LIST_CHANGE_
NOTIFICATION

Notifies the tools about a change in one
of the lists that is managed by the main
application.

HLC_ADD_TO_SCRIPT_TOOLS Places a tool in the Point and Click Script
tool.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_FILE_OPEN,(LPARAM)
cFileName);

Include File DT_Msg.h

Description Opens the specified cFileName from disk.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Table 48: Command Messages (cont.)

Command Message Description of Message
1011

Chapter 29

1012
HLC_FILE_SAVE

Name:

Description:

HLC_FILE_OPEN

Specific type of command message.

Name:

Description:

cFileName

Char string specifying the full path name of
the bitmap file to open.

Notes Use this command to open a bitmap file
(*.BMP) from disk. You need to specify the full
path name to the image in the lParam.

DT Vision Foundry supports five different
image types: binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
RGB color. The file is opened using the current
image type. You can set the image type to
open using the menu item Option | Image
Type.

Notes (cont.) After the main application opens the file, the
application adds the image to its image list. It
then notifies all tools of the new image using
the notification message
HLN_NEW_IMAGE_OBJECT.

You can also open the image directly, then add
the image to the main application’s image list
using the command message
HLC_ADD_IMAGE_OBJECT_TO_LIST.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_FILE_SAVE,(LPARAM)
cFileName);

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_SIZE_IMAGE_TO_WINDOW

Description Saves the image in the given viewport to disk
and gives the file the name given in cFileName.

Parameters

Name:

Description:

hViewport

Viewport to which are sending the command
message. This can be any valid viewport; it
does not have to be the active viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_FILE_SAVE

Specific type of command message.

Name:

Description:

cFileName

A char string specifying the full path name for
the saved image.

Notes Use this command to save a bitmap file
(*.BMP) to disk. You need to specify the full
path name for the image in lParam.

DT Vision Foundry supports five different
image types: binary, 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, and 24-bit
RGB color. The file is saved with its correct
image type automatically.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_SIZE_IMAGE_TO_WINDOW,0);

Include File DT_Msg.h
1013

Chapter 29

1014
HLC_SIZE_IMAGE_AS_ACTUAL

Description Sets the given viewport’s display mode to
stretches its associated image so that the entire
image is displayed in the viewport without
changing the size of the viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SIZE_IMAGE_TO_WINDOW

Specific type of command message.

Name:

Description:

0

This message has no associated information.

Notes This message changes the display mode for
the given viewport. Any image placed in this
viewport is displayed so that the entire image
is displayed in the viewport without resizing
the viewport. This does not keep the aspect
ratio of the image.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_SIZE_IMAGE_AS_ACTUAL,0);

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_SIZE_WINDOW_TO_IMAGE

Description Sets the given viewport’s display mode so
that it shows its associated image in its actual
size without changing the size of the
viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SIZE_IMAGE_AS_ACTUAL

Specific type of command message.

Name:

Description:

0

This message has no associated information.

Notes This message changes the display mode for
the given viewport. Any image placed in this
viewport is displayed in its actual size
without resizing the viewport. If the image is
larger than the viewport, scrollbars are added
to the viewport. If the image is smaller than
the viewport, the viewport shrinks to fit the
image. This keeps the aspect ratio of the
image.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_SIZE_WINDOW_TO_IMAGE,0);
1015

Chapter 29

1016
HLC_ADD_IMAGE_OBJECT_TO_LIST

Include File DT_Msg.h

Description Sizes the given viewport to the same size as
the image so that it shows the entire
associated image in its actual size.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SIZE_WINDOW_TO_IMAGE

Specific type of command message.

Name:

Description:

0

This message has no associated information.

Notes This message changes the size of the viewport
to fit the size of the image. It sets the mode of
the viewport to
HLC_SIZE_IMAGE_AS_ACTUAL. If the
viewport is then resized using the mouse,
scrollbars are added and the image is
displayed in its actual size.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_ADD_IMAGE_OBJECT_TO_LIST,
(LPARAM)CImage);

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Include File DT_Msg.h

Description Adds an image to the main application’s
image list.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ADD_IMAGE_OBJECT_TO_LIST

Specific type of command message.

Name:

Description:

CImage

Pointer to a CcImage derived Image object
that you want added to the main application’s
image list.

Notes Any tool can create an DT Vision Foundry
CcImage derived Image object or a custom
CcImage derived Image object and then share
this image with other tools by adding the
image to the main application’s image list.
Send a pointer to the image in lParam when
using this message. Once you add an image to
the image list, you should not delete the
image directly because another tool may be
using it. If you wish to delete an image from
the image list, use the
HLC_DEL_IMAGE_OBJECT_FR_LIST
command message.
1017

Chapter 29

1018
HLC_DEL_IMAGE_OBJECT_FR_LIST

Notes (cont.) After the main application adds the image to
its image list, the application notifies all tools
of the new image via the notification message
HLN_NEW_IMAGE_OBJECT.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_DEL_IMAGE_OBJECT_FR_LIST,
(LPARAM)CImage);

Include File DT_Msg.h

Description Deletes an image from the main application’s
image list.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_DEL_IMAGE_OBJECT_FR_LIST

Specific type of command message.

Name:

Description:

CImage

Pointer to a CcImage derived Image object
that you want deleted from the main
application’s image list.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_SET_IMAGE_OBJECT

Notes If an image is in the main application’s image
list, you should not delete it directly because
another tool may be using it. To delete such an
image, use this message specifying the image
you want deleted in lParam. When the main
application deletes an image due to this
message, the application notifies all tools
using the notification message
HLN_DEL_IMAGE_OBJECT. If you created
an image and have not added it to the main
application’s image list, you need to delete it
directly.

This message deletes the Image object as it
removes it from the list. Do not delete the
Image object yourself when using this
message.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_SET_IMAGE_OBJECT,
LPARAM)CImage);

Include File DT_Msg.h

Description Associates the given image with the given
viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.
1019

Chapter 29

1020
HLC_CLEAR_IMAGE_OBJECT

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SET_IMAGE_OBJECT

Specific type of command message.

Name:

Description:

CImage

Pointer to the image you want to associate
with the specified viewport.

Notes An image is displayed in a viewport by
associating the image with the viewport. A
single image can be associated with multiple
viewports. A tool can create an image and
then display this image in a viewport by
associating the image with the viewport using
this message. The Memory Images tool selects
images into viewports using this message.
Before you associate a newly created image
(an image created by your tool) with a
viewport, the image should be added to the
main application’s image list using the
command message
HLC_ADD_IMAGE_OBJECT_TO_LIST.

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_CLEAR_IMAGE_OBJECT,
(LPARAM)CImage);

Include File DT_Msg.h

Description Unassociates the given Image object from all
viewports without deleting the image object.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_CLEAR_IMAGE_OBJECT

Specific type of command message.

Name:

Description:

CImage

Pointer to an Image object derived from a
CcImage object.

Notes If you want a tool to clear an image from all
viewports but not delete the image or remove
it from the main application’s image list, you
can use this message. Place a pointer to the
image in the lParam parameter of this
message. You do not have to send this
message to each viewport associated with this
image to clear them all; the main application
does that for you.

If you want a tool to delete an Image object
and remove this object from the main
application’s image list and from all
viewports, use the command message
HLC_DEL_IMAGE_OBJECT_FR_LIST.
1021

Chapter 29

1022
HLC_REDRAW_IMAGE_OVERLAY

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_REDRAW_IMAGE_OVERLAY,0);

Include File DT_Msg.h

Description Redraws the image’s overlay for the image in
the given viewport without redrawing the
image.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Parameter is required for all command
messages.

Name:

Description:

HLC_REDRAW_IMAGE_OVERLAY

Specific type of command message.

Name:

Description:

0

No information is needed for this message.

Notes If you add something to an image’s overlay
you can call this method to only redraw the
image’s overlay and not redraw the image. If
you change the overlay (not just add to it) you
should redraw both the image and its overlay
using the message HLC_REDRAW_VIEW.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_REDRAW_VIEW

Syntax ::SendMessage(hViewport,
HL_COMMAND, HLC_REDRAW_VIEW,
(LPARAM)0);

Include File DT_Msg.h

Description Redraws the image that is associated with the
given viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_REDRAW_VIEW

Specific type of command message.

Name:

Description:

0

No information is needed for this message.
1023

Chapter 29

1024
HLC_SET_LOGICAL_PALETTE_TO

Notes After a tool changes an image (such as the
Filter tool), the tool must redraw the image so
that you can see the change in the image. The
main application redraws the image that is
associated with the given viewport and all
other viewports that are displaying this
image. It also redraws the image’s overlay if
the image has one. For example, if you change
an image and it is being displayed in five
viewports, you need only send this message
to the viewport where you obtained the
image. The main application automatically
changes the image in the other viewports.

When a viewport redraws its associated
image due to this message, it notifies all tools
using the notification message
HLN_VIEWPORTS_IMAGE_CHANGED.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_SET_LOGICAL_PALETTE_TO,
LPARAM)colorpalette);

Include File DT_Msg.h

Description Sets the display mode of the viewport to the
given type of color palette.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SET_LOGICAL_PALETTE_TO

Specific type of command message.

Name:

Description:

colorpalette

Specifies the type of color palette with which
to display its associated image. Can be one of
the following values:

• CTABLE_TO_ORIG_RGB − Displays the
image with its original color table. Only
files opened from disk have an original
color table.

• CTABLE_TO_LINR_RGB − Displays the
image as an RGB image. You can use this
color table to view an RGB, HSL, and
grayscale image with false coloring.

• CTABLE_TO_INDEXED256 − Displays the
image using 256 shades of gray.

• CTABLE_TO_INDEXED128 − Displays the
image using 128 shades of gray.

• *CTABLE_TO_INDEXED064 − Displays
the image using 64 shades of gray
(default).

• CTABLE_TO_RINDEXED256 − Displays
the image using 256 colors that can be
grayscale or RGB colors. This type of color
table is used for thresholding using palette
animation.
1025

Chapter 29

1026
Description (cont.): • CTABLE_TO_RINDEXED128 − Displays
the image using 128 colors that can be
grayscale or RGB colors. This type of color
table is used for thresholding using palette
animation.

• CTABLE_TO_RINDEXED064 − Displays
the image using 64 colors that can be
grayscale or RGB colors. This type of color
table is used for thresholding using palette
animation.

Notes DT Vision Foundry provides eight different
ways to display the same image. You can
display the same image in multiple viewports,
each using a different color table.

The grayscale color table is used only for
binary, 8-bit, 32-bit, and floating-point
grayscale images.

DT Vision Foundry supports many color
tables because of the vast differences in
hardware that you may be using or to which
you may be porting your algorithm. The
default color table is the
CTABLE_TO_INDEXED064.

You can change the color table that is used by
a viewport by activating the viewport, and
then selecting your choice from the DT Vision
Foundry main application’s menu item View
| Color Table or by using a tool that is using
this message.

The color table and the output LUT described
in the main application’s documentation are
synonymous.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_SHOW_PIXEL_GROUPING

Notes (cont.) You can use the DT Vision Foundry Display
tool to display images with various color
tables.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_SHOW_PIXEL_GROUPING,
(LPARAM)pPixels);

Include File DT_Msg.h

DT_Str.h

Description Shows a graphic consisting of a group of
pixels in the given viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SHOW_PIXEL_GROUPING

Specific type of command message.

Name:

Description:

pPixels

Pointer to a PIXELGROUPING structure.
1027

Chapter 29

1028
Notes It is sometimes useful to display graphics in
different colors on an image in a viewport.
The Line Profile tool does this to mark the
spot on an image that corresponds to a
specific point on the line profile. To use this
command, fill in a PIXELGROUPING
structure and then send a pointer to the
structure with this message to the viewport in
which you want the graphics displayed.

PIXELGROUPING description:
struct PixelGroupTag {
int iRed,iGreen,iBlue;
int iNumOfPoints;
POINT* stPOINTS;
HGLOBAL hstPOINTS;
};
typedef struct PixelGroupTag

PIXELGROUPING;

The iRed, iGreen and iBlue variables describe
the color in which the graphic is displayed.

You need to set iNumOfPoints to the number
of points in the graphic.

You need to allocate the memory for the
points that make up the graphic using the
SDK function GlobalAlloc(). The returned
global handle is placed in the hstPOINTS
variable. Once allocated, you must
GlobalLock the memory and cast the pointer
into the variable stPOINTS. You need to free
the memory later by calling GlobalUnlock
and GlobalFree.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Example The following is an example of how to draw a
red diagonal line made up of 100 points in a
viewport:

{
PIXELGROUPING Pixels;

Pixels.iRed= 255;
Pixels.iGreen= 0;
Pixels.iBlue= 0;
Pixels.hstPOINTS=

GlobalAlloc(GHND, 100
*sizeof(POINT));

Pixels.stPOINTS= (POINT*)
GlobalLock(Pixels.hstPOINTS);

for(int x=0; x<100; x++)
{
Pixels.stPOINTS.x = x;
Pixels.stPOINTS.y = x;
}
::SendMessage(

hViewport, HL_COMMAND,
HLC_SHOW_PIXEL_GROUPING,
(LPARAM)&Pixels)

GlobalUnlock(Pixels.hstPOINTS);
GlobalFree(Pixels.hstPOINTS);
}

Do not forget to free the memory once you no
longer need it (using GlobalUnlock() and
GlobalFree()).

The line is not displayed in the viewport if the
viewport has no image associated with it.
1029

Chapter 29

1030
HLC_ADD_CALIBRATION_OBJECT_TO_LIST

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_ADD_CALIBRATION_OBJECT_TO_
 LIST,(LPARAM)CCalibration);

Include File DT_Msg.h

Description Adds the given Calibration object to the main
application’s Calibration object list.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ADD_CALIBRATION_OBJECT_TO_
 LIST

Specific type of command message.

Name:

Description:

CCalibration

Pointer to a Calibration object to add to the list
(class CcCalibration).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_DEL_CALIBRATION_OBJECT_FR_LIST

Notes Tools use Calibration objects to calculate their
measurements in calibrated units. The main
application keeps a list of all Calibration
objects in the system. You can add a new
Calibration object to this list by using this
message. After the Calibration object is added
to the list, the main application notifies all
tools using the notification message
HLN_NEW_CALIBRATION_OBJECT.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_DEL_CALIBRATION_OBJECT_FR_
 LIST,(LPARAM)CCalibration);

Include File DT_Msg.h

Description Deletes the given Calibration object from the
main application’s Calibration object list.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_DEL_CALIBRATION_OBJECT_FR_
LIST

Specific type of command message.
1031

Chapter 29

1032
HLC_SET_DEFAULT_CALIBRATION_OBJECT

Name:

Description:

CCalibration

Pointer to a Calibration object to be deleted
from the list (class CcCalibration).

Notes Tools use Calibration objects to calculate their
measurements in calibrated units. The main
application keeps a list of all Calibration
objects in the system. You can remove a
Calibration object from this list by using this
message. After the Calibration object is
removed from the list, the main application
notifies all tools using the notification
message HLN_DELETING_CALIBRATION_
OBJECT and the message HLN_DELETED_
CALIBRATION_OBJECT.

Any Image objects using the deleted
Calibration object is disassociated from it
automatically.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_SET_DEFAULT_CALIBRATION_
OBJECT, (LPARAM)CCalibration);

Include File DT_Msg.h

Description Sets the given Calibration object as the default
Calibration object within the system.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SET_DEFAULT_CALIBRATION_
 OBJECT

Specific type of command message.

Name:

Description:

Ccalibration

A pointer to a Calibration object that becomes
the default Calibration object (class
CcCalibration).

Notes Tools use Calibration objects to calculate their
measurements in calibrated units. The main
application keeps a list of all Calibration
objects in the system. When a file is opened
from disk and it is the correct size, the
application uses the default Calibration object
to calculate its measurements. You can set the
default Calibration object using this message.
The main application notifies all tools using
the notification message
HLN_DEFAULT_CALIBRATION_OBJECT_
CHANGED.
1033

Chapter 29

1034
HLC_ACTIVE_ROI

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_ACTIVATE_ROI,(LPARAM)CRoi);

Include File DT_Msg.h

Description Makes the given ROI the active ROI within
the given viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ACTIVATE_ROI

Specific type of command message.

Name:

Description:

CRoi

Pointer to a ROI object derived from a
CcRoiBase object.

Notes Most tools work on the active ROI when they
perform their calculations. You can set the
active ROI by using this message. The main
application notifies the tools of this using the
notification message HLN_ROI_ACTIVATED.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_ROI_DELETE_ALL

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_ROI_DELETE_ALL,0);

Include File DT_Msg.h

Description Deletes all the ROIs in the given viewport.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ROI_DELETE_ALL

Specific type of command message.

Name:

Description:

0

No information is needed for this message

Notes After adding several ROIs to a viewport you
may need to delete the ROIs. You can delete
all ROIs in the given viewport by using this
message. The main application notifies the
tools for each ROI that it is deleted using the
notification message
HLN_DELETING_ROI_OBJECT and the
message HLN_DELETED_ROI_OBJECT.
1035

Chapter 29

1036
HLC_SET_ROI_TYPE_TO

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_SET_ROI_TYPE_TO,
(LPARAM)iType);

Include File DT_Msg.h

Description Sets the ROI type creation in the main
application to the desired type.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SET_ROI_TYPE_TO

Specific type of command message.

Name:

Description:

iType

Type of ROI creation desired. It can be one of
the following:

• ROI Type − Description.

• ROI_POINT − Point.

• ROI_RECT − Rectangular.

• ROI_LINE − Line.

• ROI_FLINE − Freehand Line.

• ROI_PLINE − Poly Freehand Line.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2
HLC_SET_ROI_MODE_TO

Description (cont.): • ROI_ELLIPSE − Elliptical.

• ROI_FREEHAND − Freehand.

• ROI_PFREEHAND − Poly Freehand.

Notes Instead of having to select the ROI type
manually from the main application or ROI
tool, you can use this message to set the ROI
creation type. The main application notifies
the tools of this using the notification message
HLN_ROI_TYPE_CHANGE.

Syntax ::SendMessage(
hViewport,HL_COMMAND,
HLC_SET_ROI_MODE_TO,
(LPARAM)iMode);

Include File DT_Msg.h

Description Sets the ROI mode of action in the main
application to the desired type.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SET_ROI_MODE_TO

Specific type of command message.
1037

Chapter 29

1038
HLC_ROI_ADD

Name:

Description:

iMode

Mode of ROI action desired. It can be one of
the following:

• HLROI_MODE_OFF − No default action
occurs.

• HLROI_MODE_DRAW − Current ROI
type is created.

• HLROI_MODE_MOVE − Active ROI is
moved/ resized.

• HLROI_MODE_COPY − Active ROI is
copied.

• HLROI_MODE_DELETE − Active ROI is
deleted.

• HLROI_MODE_ACTIVATE − Any ROI is
activated.

Notes The ROI mode of action is the action that
results when you perform mouse operations
in a viewport. If the ROI mode is set to
HLROI_MODE_DRAW, an ROI is created. If
the ROI mode is set to HLROI_MODE_OFF,
no default action occurs.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_ROI_ADD,(LPARAM)CRoi);

Include File DT_Msg.h

Description Adds the given ROI to the given viewport’s
ROI list.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ROI_ADD

Specific type of command message.

Name:

Description:

CRoi

Pointer to an ROI object derived from a
CcRoiBase object.

Notes A tool can create a ROI and then add this ROI
to a viewport. The Blob tool uses this message
to add ROIs to viewports. To add a newly
created ROI to a viewport, send this message
to the desired viewport with a pointer to the
ROI in the lParam parameter of the message.

After a viewport adds the ROI to its list, the
viewport notifies the tools using the
notification message HLN_ROI_CREATED.

Each viewport in the DT Vision Foundry main
application contains a list of ROIs. When you
add an ROI to a viewport, you are adding the
ROI to the viewport’s list of ROIs. If you need
to add many ROIs to this list, add the ROIs
directly using the methods of the CcList
object. Make sure that the last ROI is added to
the list using this command message; this
updates all tools and viewports.
1039

Chapter 29

1040
HLC_ROI_DELETE

Notes (cont.) If you do not add the last ROI in this manner,
the tools and the viewports are not updated.
You can add all ROIs to the viewport’s list
using this command message, but this is
slower than doing it directly. Thus, if you have
ten new ROI objects to add to the list, add the
first nine directly, and add the tenth ROI using
this command message. This is how the Blob
Analysis tool adds ROIs.

There are two modes of operation in the main
application with respect to ROIs: the ROIs can
be attached to the viewport or to the image
itself. In either case, only one ROI list can be
associated with a viewport at any given time.
This message always adds the ROI to the
correct ROI list and is transparent to which
mode of operation the main application is in.

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_ROI_DELETE,(LPARAM)CRoi);

Include File DT_Msg.h

Description Deletes the given ROI from the given
viewport’s ROI list.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ROI_DELETE

Specific type of command message.

Name:

Description:

CRoi

Pointer to a ROI object derived from a
CcRoiBase object.

Notes A tool can create a ROI and then add this ROI
to a viewport. Later, you may want the tool to
delete this ROI from the viewport. It can do so
using this message.

After a viewport deletes the ROI from its list,
it notifies the tools using the notification
message HLN_DELETING_ROI_OBJECT and
the message HLN_DELETED_ROI_OBJECT.

Each viewport in the DT Vision Foundry main
application contains a list of ROIs. When you
delete an ROI from a viewport, you are
deleting the ROI from the viewport’s list of
ROIs. If you need to delete many ROIs from
this list, do it directly using the methods of the
CcList object.

Make sure that you delete the last ROI from
the list using this command message; this
updates all tools and viewports. If you do not
delete the last ROI in this manner, the tools
and the viewports are not updated. You can
delete all ROIs from the viewport’s list using
this command message, but this is slower
than doing it directly.
1041

Chapter 29

1042
HLC_SEND_NAME_CHANGE_NOTIFICATION

Notes (cont.) Thus, if you have ten ROI objects to delete
from the list, delete the first nine directly, and
delete the tenth ROI by using this command
message. This is how the Blob Analysis tool
deletes ROIs.

There are two modes of operation in the main
application with respect to ROIs: the ROIs can
be attached to the viewport or to the image
itself. In either case, only one ROI list can be
associated with a viewport at any given time.
This message always deletes the ROI from the
correct ROI list and is transparent to which
mode of operation the main application is in.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_SEND_NAME_CHANGE_
 NOTIFICATION,(LPARAM)CObject);

Include File DT_Msg.h

Description Instructs the main application to notify all
tools that the name of the given object has
changed.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_MANAGE_VIEWPORT

Name:

Description:

HLC_SEND_NAME_CHANGE_
 NOTIFICATION

Specific type of command message.

Name:

Description:

CObject

Pointer to any DT Vision Foundry derived
object.

Notes If a tool changes the name of an object (such as
the Memory Images tool), the tool must let the
main application and other tools know about
it. You do this by sending the main
application this message with a pointer to the
object whose name has changed, given in the
lParam parameter of the message. The main
application then notifies all tools of this using
the notification message
HLN_OBJECT_NAME_CHANGED.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_MANAGE_VIEWPORT,
(LPARAM)bFlag);

Include File DT_Msg.h

Description Manages the given viewport with respect to
hide, show, minimize, maximize, and restore.

Parameters

Name:

Description:

hViewport

Viewport that you want to control.
1043

Chapter 29

1044
HLC_MANAGE_MAINAPP

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_MANAGE_VIEWPORT

Specific type of command message.

Name:

Description:

bFlag

Flag to determine how to manage the
viewport. It can be one of the following
values:

• SW_HIDE − Hides the viewport and
activates another viewport.

• SW_MAXIMIZE − Maximizes the specified
viewport.

• SW_MINIMIZE − Minimizes the specified
viewport.

• SW_RESTORE − Activates and displays
the viewport. If the viewport is minimized
or maximized, this restores it to its original
size and position.

• SW_SHOW − Activates the viewport and
displays it in its current size and position.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_MANAGE_MAINAPP,
(LPARAM)bFlag);

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Description Manages the DT Vision Foundry main
application with respect to hide, show,
minimize, maximize, and restore.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_MANAGE_MAINAPP

Specific type of command message.

Name:

Description:

bFlag

Flag to determine how to manage the
viewport. It can be one of the following
values:

• SW_HIDE − Hides the viewport and
activates another viewport.

• SW_MAXIMIZE − Maximizes the
specified viewport.

• SW_MINIMIZE − Minimizes the specified
viewport.

• SW_RESTORE − Activates and displays
the viewport. If the viewport is minimized
or maximized, this restores it to its original
size and position.

• SW_SHOW − Activates the viewport and
displays it in its current size and position.
1045

Chapter 29

1046
HLC_POSITION_VIEWPORT

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_POSITION_VIEWPORT,
(LPARAM)&stPOS);

Include File DT_Msg.h

Description Position and size the given viewport.

Parameters

Name:

Description:

hViewport

Viewport that you want to control.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_POSITION_VIEWPORT

Specific type of command message.

Name:

Description:

stPOS

Windows RECT structure describing the new
position and size of the viewport.

Notes This positions the viewport with respect to the
main application’s position, not with respect
to the screen.

Example The following is an example of how to use this
message:

void CcDTTool::OnPositionViewport(
)

{
 RECT stPos;

stPos.top = 10;
stPos.bottom = 310;

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_POSITION_MAINAPP

Example (cont.) stPos.left = 10;
 stPos.right = 310;

::SendMessage(m_hActiveViewport,
HL_COMMAND,
HLC_POSITION_VIEWPORT,(LPARAM)&
stPos);

}

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_POSITION_MAINAPP,
(LPARAM)&stPOS);

Include File DT_Msg.h

Description Position and size the DT Vision Foundry main
application.

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_POSITION_MAINAPP

Specific type of command message.
1047

Chapter 29

1048
HLC_ARRANGE_VIEWPORTS

Name:

Description:

stPOS

Windows RECT structure describing the new
position and size of the viewport.

Notes This positions the viewport with respect to the
main application’s position, not with respect
to the screen.

Example The following is an example of how to use this
message:

void CcDTTool::OnPositionMainapp(
)

{
RECT stPos;
stPos.top = 10;
stPos.bottom = 510;
stPos.left = 10;
stPos.right = 510;

::SendMessage(m_hActiveViewport,
HL_COMMAND,
HLC_POSITION_MAINAPP,
(LPARAM)&stPos);

}

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_ARRANGE_VIEWPORTS,
(LPARAM)iFlag);

Include File DT_Msg.h

Description Arranges all of the DT Vision Foundry
viewports. It can be tiled horizontally, tiled
vertically, cascaded, or arranged.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_CLOSE_VIEWPORT

Parameters

Name:

Description:

hViewport

Viewport to which you are sending the
command message. This can be any valid
viewport; it does not have to be the active
viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ARRANGE_VIEWPORTS

Specific type of command message.

Name:

Description:

iFlag

Flag to specify how to arrange the viewports.
It can be one of the following:

• HLV_TILE_HORIZONTAL − Tile
horizontally.

• HLV_TILE_VERTICAL − Tile vertically.

• HLV_CASCADE − Cascade.

• HLV_ARRANGE_ICONS − Arrange icons.

Syntax ::SendMessage(
hViewport, HL_COMMAND,
HLC_CLOSE_VIEWPORT,(LPARAM)0);

Include File DT_Msg.h

Description Closes the given viewport.
1049

Chapter 29

1050
HLC_ACTIVATE_VIEWPORT

Parameters

Name:

Description:

hViewport

Viewport that you want to close.

Name:

Description:

HL_COMMAND

Required for all command messages

Name:

Description:

HLC_CLOSE_VIEWPORT

Specific type of command message.

Name:

Description:

0

This message does not use the lParam
parameter, thus place a 0 in this parameter.

Notes You can not close all the viewports in DT
Vision Foundry. You must always have at least
one viewport open. If you try to close the last
viewport, the viewport is not closed.

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_ACTIVATE_VIEWPORT,
(LPARAM)0);

Include File DT_Msg.h

Description Activates the given viewport.

Parameters

Name:

Description:

hViewport

Viewport that you want to activate.

Name:

Description:

HL_COMMAND

Required for all command messages.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLC_ADD_LIST_TO_MAIN_LIST

Name:

Description:

HLC_ACTIVATE_VIEWPORT

Specific type of command message.

Name:

Description:

0

This message does not use the lParam
parameter, thus place a 0 in this parameter.

Syntax ::SendMessage(hViewport,
HL_COMMAND,
HLC_ADD_LIST_TO_MAIN_LIST,
(LPARAM) &CList;

Include File DT_Msg.h

Description Adds a user-defined list to the main object list.

Parameters

Name:

Description:

hViewport

The viewport that you are sending the
command message to. It can be any viewport;
it does not have to be the active viewport.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ADD_LIST_TO_MAIN_LIST

Specific type of command message.

Name:

Description:

CList

The address of the list to add to the main list.
1051

Chapter 29

1052
HLC_SEND_LIST_CHANGE_NOTIFICATION

HLC_ADD_TO_SCRIPT_TOOLS

Syntax ::SendMessage(m_hActiveViewport,
HL_COMMAND,
HLC_SEND_LIST_CHANGE_

NOTIFICATION, (LPARAM)String);

Include File DT_Msg.h

Description Notifies the tools about a change in one of the
lists that is managed by the main application.

Parameters

Name:

Description:

m_hActiveViewport

The active viewport that you are sending the
command message to. I

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_SEND_LIST_CHANGE_
NOTIFICATION

Specific type of command message.

Name:

Description:

String

A character string which contains the name of
the list (such as a number list) that has
changed.

Syntax ::SendMessage(m_hActiveViewport,
HL_COMMAND,
HLC_ADD_TO_SCRIPT_TOOLS
(LPARAM)&stScript);

Include File DT_Msg.h

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Point and Click Script Messages

Point and click script messages are sent to a tool from the Point and
Click Script tool to command or request some type of information.

All messages are sent from the Point and Click Script tool and are
routed through the main application to all other tools. This is
accomplished using the standard Windows function SendMessage.
For more information on the SendMessage() function, see the
Windows SDK API documentation.

A point and click script message has the following form:

SendMessage(hTool,HL_SCRIPT, specific notification
message, message specific information);

Information about the event is often contained in the lParam
parameter of the message. For further information on the contained
information, see Chapter 2 starting on page 11.

Description Places a tool in the Point and Click Script tool.

Parameters

Name:

Description:

m_hActiveViewport

The active viewport that you are sending the
command message to.

Name:

Description:

HL_COMMAND

Required for all command messages.

Name:

Description:

HLC_ADD_TO_SCRIPT_TOOLS

Specific type of command message.

Name:

Description:

stScript

The address of the point and click script
structure for the specified tool.
1053

Chapter 29

1054
All point and click script messages are processed in a tool by
processing the HL_SCRIPT message sent by the main application.
This message map is already set up to map to the HLScript()
message handler in the example change tool (located in C:\Program
Files\Data Translation\DT Vision Foundry\C++ Devel\Examples\
Tools\Change, by default). Thus, all notification messages should be
processed in the switch statement of the HLScript) message handler.
You can process none, all, or some of the notification messages in the
switch statement. Which notification messages you process is
determined by the desired functionality of your tool.

The following example shows starting code for this event handler
and the point and click script messages HLN_RUN_SCRIPT and
HLS_STEP_SCRIPT:

//**************** H L SCRIPT **************//
LRESULT CcDTTool::HLScript(WPARAM wParam,

LPARAM lParam)
{
/*Start of Dec Section*/
/*End of Dec Section*/

switch(wParam)
{

case HLS_RUN_SCRIPT:
(process this message here)
return(TRUE);
break;
case HLN_STEP_SCRIPT:
(process this message here)
return(TRUE);
break;

}
return(TRUE);

}
//************* H L SCRIPT ****************//

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Note: All DT Vision Foundry point and click script messages start
with the prefix: HLS_.

The point and click script messages are briefly described in Table 49.

Table 49: Point and Click Script Messages

Point and Click Script Messages Description

HLS_RUN_SCRIPT Commands the tool to run the script.

HLS_STEP_SCRIPT Commands the tool to step through
the script.

HLS_INITIALIZE_FOR_RUN Commands the tool to initialize any
components of the tool, such as
allocating buffers, that could be
reused when the script is run.

HLS_EDIT_SCRIPT Notifies the tool that the user has
pressed the Edit button of the Point
and Click Script; the tool should
respond appropriately.

HLS_UNINITIALIZE_FROM_RUN Notifies the tool that the script has
been stopped and commands the tool
to destroy any data that was
previously set up with
HLS_INITIALIZE_FOR_RUN.

HLS_CANCEL_EDIT Notifies the tool that the user has
pressed the Cancel button of the
Point and Click Script; the tool should
respond appropriately.

HLS_SUPPLY_SCRIPT_STRUCT
_SIZE

Requests the size of the script
structure used by the specified tool.
This message is used during
upgrades of script structures to new
versions.
1055

Chapter 29

1056
HLS_RUN_SCRIPT

HLS_SUPPLY_SCRIPT_STRUCT
_DEFAULTS

Requests the default values for the
script elements that were added to a
new tool.

HLS_CREATING_SCRIPT_
STRUCT

Notifies the tool that a memory block
for a script structure has been
created.

HLS_DELETING_SCRIPT_
STRUCT

Notifies the tool that a memory block
for a script structure has been
deleted.

HLS_CAN_TOOL_BE_PARENT Requests whether the specified tool
can be a parent.

HLS_CAN_BRANCH_TO_
CHILDREN

Requests whether the specified tool
can execute the child tools.

HLS_BRANCH_TO_CHILDREN_
DONE

This message is issued when the
child tools have completed execution.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_RUN_SCRIPT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Table 49: Point and Click Script Messages (cont.)

Point and Click Script Messages Description

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLS_STEP_SCRIPT

Include File DT_Msg.h

Description Commands the tool to execute the portion of
the tool that is responsible for running the
point and click script.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes None

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_STEP_SCRIPT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h
1057

Chapter 29

1058
HLS_INITIALIZE_FOR_RUN

Description Commands the tool to step through the point
and click script.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the point and click script.

Notes None

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_INITIALIZE_FOR_RUN:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Commands the tool to initialize the
components of a tool (such as allocating
buffers) that can be reuesd when the script is
run.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLS_EDIT_SCRIPT

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes This message is sent before the
HLS_RUN_SCRIPT message.

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_EDIT_SCRIPT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Notifies the tool that the user pressed the Edit
button of the Point and Click Script tool; the
tool should then handle this message
appropriately.
1059

Chapter 29

1060
HLS_UNINITIALIZE_FOR_RUN

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes None

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_UNINITIALIZE_FOR_RUN:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Notifies the tool that the point and click script
stopped running.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLS_CANCEL_EDIT

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes Once it receives this message, the tool can
destroy any data that was set up when it
received the HLS_INITIALIZE_FOR_RUN
message.

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_CANCEL_EDIT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Notifies the tool that the user pressed the
Cancel button of the Point and Click Script
tool; the tool should then handle this message
appropriately.
1061

Chapter 29

1062
HLS_SUPPLY_SCRIPT_STRUCT_SIZE

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes None

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_SUPPLY_SCRIPT_STRUCT_

SIZE:
return(sizeof(STSCRIPT));
break;
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Requests the size of the script structure that is
used by a specified tool.

Parameters None

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Notes This message along with
HLS_SUPPLY_SCRIPT_STRUCT_DEFAULTS
provides a mechanism for upgrading script
structures.

For example, assume that you modified a tool
by extending its capabilities; in the process,
you were forced to expand the script
structure. To be able to run a script that was
created with the original, unmodified tool,
you need to use the
HLS_SUPPLY_SCRIPT_STRUCT_
SIZE message. When it receives the
HLS_SUPPLY_SCRIPT_STRUCT_
SIZE message, the tool must respond with a
proper value (such as
sizeof(my_tools_structure)). The point and
click script can then allocate the proper size
memory block and fill it with the values from
the previously recorded script. When the
HLS_SUPPLY_SCRIPT_STRUCT_
DEFAULTS message is received, the new
fields can then be initialized.

Return Values

int Size of the tool’s point and click script
structure.
1063

Chapter 29

1064
HLS_SUPPLY_SCRIPT_STRUCT_DEFAULTS

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_SUPPLY_SCRIPT_STRUCT_

DEFAULTS:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Requests the default values for the script
elements that were added to a new tool.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes This message is sent only if the script
structure size that was recorded by the Point
and Click Script tool differs from the one that
was supplied in response to the
HLS_SUPPLY_SCRIPT_STRUCT_SIZE
message.

This message along with
HLS_SUPPLY_SCRIPT_STRUCT_SIZE
provides a mechanism for upgrading script
structures.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Notes (cont.) For example, assume that you modified a tool
by extending its capabilities; this
automatically expanded the script structure.
To be able to run a script that was created with
the original, unmodified tool, you need to use
the HLS_SUPPLY_SCRIPT_STRUCT_
SIZE message. When it receives the
HLS_SUPPLY_SCRIPT_STRUCT_
SIZE message, the tool must respond with a
proper value (such as
sizeof(my_tools_structure)). The point and
click script can then allocate the proper size
memory block and fill it with the values from
the previously recorded script. When the
HLS_SUPPLY_SCRIPT_STRUCT_
DEFAULTS message is received, the new
fields can then be initialized.

Return Values

TRUE Successful.

FALSE Failed.
1065

Chapter 29

1066
HLS_CREATING_SCRIPT_STRUCT

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_CREATING_SCRIPT_STRUCT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description This message is sent when a point and click
script internally creates a memory block for a
script structure of specified tool.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes A memory block is created only when a script
is loaded from disk or when a tool is added to
a point and click script.

When it receives this message, the tool can
initialize any internal structures that require
initialization (such as instantiating any class
needed by the tool).

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLS_DELETING_SCRIPT_STRUCT

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_DELETING_SCRIPT_STRUCT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description This message is sent when a point and click
script internally deletes a memory block for a
script structure of specified tool.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the point and click script.

Notes This message provides a mechanism for
deleting anything that was initialized when
the HLS_CREATING_SCRIPT_STRUCT
message was received.
1067

Chapter 29

1068
HLS_CAN_TOOL_BE_PARENT

Return Values

TRUE Successful.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_CAN_TOOL_BE_PARENT:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE); //if can be parent
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Requests whether a tool can invoke other
tools to perform additional processing when
the point and click script is run.

Parameters None

Notes If a tool responds with TRUE to this message,
the Point and Click Script tool allows new
"child" tools to be added underneath this
"parent" tool. The Point and Click Script tool
branches to the child tools in response to the
HLS_CAN_BRANCH_TO_CHILDREN
message.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

HLS_CAN_BRANCH_TO_CHILDREN

Notes (cont.) This message is used to handle asynchronous
acquires by the Picture tool, but can be used
by any tool that needs to perform additional
processing under special circumstances.

Return Values

BOOL If TRUE, the tool can be a parent; if FALSE, the
tool cannot be a parent.

FALSE Failed.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_CAN_BRANCH_TO_CHILDREN:
return(TRUE);
//if branching is desired
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description Notifies the point and click script whether or
not to execute its child tools.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes None
1069

Chapter 29

1070
HLS_BRANCH_TO_CHILDREN_DONE

Return Values

TRUE Executes child tools.

FALSE Does not execute child tools.

Syntax //******* H L SCRIPT ******//
LRESULT CcDTTool::HLScript(WPARAM

wParam,LPARAM lParam)
{
switch(wParam)
{
case HLS_BRANCH_TO_CHILDREN_DONE:
STSCRIPT* stScriptStruct =

(STSCRIPT*)lParam;
(process message accordingly...)
return(TRUE);
}
//***** H L SCRIPT ********//

Include File DT_Msg.h

Description This message is issued when the child tools
have completed execution.

Parameters

Name:

Description:

STSCRIPT *

A pointer to the tool-specific point and click
script structure.

Notes None

Return Values

TRUE Successful.

FALSE Failed.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Example Tool Implementation
This section shows how to create, install, and run a custom tool that is
based on the example change tool that is included in the DT Vision
Foundry package (located in C:\Program Files\Data Translation\DT
Vision Foundry\C++ Devel\Examples\Tools\Change, by default).
This tool sets all of the pixels in an active viewport to a user-defined
value with respect to the viewport’s active ROI. The image used as
the input image can be any type of image, and the ROI used as the
active ROI can also be of any type.

This example consists of the following main tasks, which are
described in the following subsections:

• Create a base tool.

• Register the tool with DT Vision Foundry.

• Customize the look of the tool.

• Add functionality using the command and request messages.

• Add functionality using the notification messages.

• Separate the tool into separate modules.

Creating a Base Tool

First, create a base tool that has no functionality. You can easily
accomplish this task by using the example change tool that is
included in the DT Vision Foundry package (located in C:\Program
Files\Data Translation\DT Vision Foundry\C++ Devel\Examples\
Tools\Change, by default). The example change tool is provided
with all the necessary code and a workspace that together serve as a
starting place for all DT Vision Foundry tools. All DT Vision Foundry
tools were created using the example change tool.
1071

Chapter 29

1072
Note: If you are building your custom tool in release mode, you
need to link it with the release DTAPI.LIB and run it with the release
version of DT Vision Foundry and the release versions of all the
tools.

If you are building your custom tool in debug mode, you need to
link it with the debug DTAPID.LIB, and run it with the debug
version of DT Vision Foundry and the debug versions of all the tools.

Both versions of each tool are supplied and are located in the same
directory. The release version of a tool does not have a prefix and the
debug version of the same tool starts with the prefix D_ (where D
stands for debug).

The workspace (for both versions) is named DT_TOOL.DSW and the
project workspace file is named DT_TOOL.DSW.

Do not intermix debug versions with release versions.

To create your own custom tool, perform the following procedure:

1. Start Visual C++ for Windows 2000 or Windows XP and load the
example change tool’s project workspace file from within the
Microsoft Visual Studio. The name of this file is DT_Change.dsw;
it is located in C:\Program Files\Data Translation\DT Vision
Foundry\C++ Devel\Examples\Tools\Change, by default).

Note: If you need more help, refer to your Visual C/C++
documentation.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

2. If you did not install the DT Vision Foundry application using the
install program, change the include path for all DT Vision
Foundry include files to C:\Program Files\Data Translation\DT
Vision Foundry\C++ Devel\Include.

3. Check to make sure that the files in the project are correct. The
following is a list of the files that are contained in the project:

− DT_Tool.CPP − Tool’s DLL module.*

− DT_Tool.DEF − Tool’s DLL definition file.*

− DT_Tool.RC − Tool’s resource file.

− d_cTool.CPP − Tool’s dialog box procedure.

− DTBaseTL.CPP − Base class DT Vision Foundry tool file.*

− stdafx.CPP − MFC standard project file.*

Note: Do not rename any of the above files.

The files marked with * above should never need to be modified.
They are supplied only for advanced Windows programmers (for
those who may wish to further understand how a tool attaches to
the main application).

4. From the Visual C++ tool bar, click Rebuild All to compile and
build the tool.

Registering a Tool with DT Vision Foundry

After building the tool, you need to register the tool with the DT
Vision Foundry main application using the DTTools.ini initialization
file. The DTTools.ini file is a standard Windows initialization file that
must be located in the same directory as the DT Vision Foundry
application (DTVF.exe). Both DTTools.ini and DTVF.exe are located
in C:\Program Files\Data Translation\DT Vision Foundry\BIN, by
1073

Chapter 29

1074
default. Do not put the DTTools.ini initialization file in the Windows
system directory. You edit the DTTools.ini file using any text editor,
such as Notepad.

Each tool should have an entry similar to the following:

[Tool1]
LOCATION=..\Tools\DT_Arith\DT_Arith.dll
TOOLBAR=Image Processing
AUTOSTART=NO

The tool numbers must be unique and sequential starting from 1.

For the LOCATION entry, you can specify either a path relative to
the location of the DT Vision Foundry application (DTVF.exe) or an
absolute path. For example, the following entries are both supported:

LOCATION=..Tools\DT_Arith\DT_Arith.dll
LOCATION=D:\Program Files\Data Translation\

DT Vision Foundry\Tools\DT_Arith\DT_Arith.dll

If you do not include a TOOLBAR entry, the tool is placed in the
Miscellaneous toolbar.

The AUTOSTART entry determines whether you want DT Vision
Foundry to automatically start the tool at program startup. If you do
not include an AUTOSTART entry, DT Vision Foundry assumes that
AUTOSTART=NO.

If you are compiling a debug version of your custom tool, you need
to run the debug version of DT Vision Foundry (DTVFD.exe) and edit
its associated DTTools.ini file (DTToolsD.ini). These files are located
in C:\Program Files\Data Translation\DT Vision Foundry\BIN, by
default.

For example, if you tool is named MyTool.dll, it is located in
C:\DTVF, and you have 20 other tools in your system, add the
following lines to the end of the DTTools.ini file:

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

[TOOL21]
LOCATION=C:\DTVF\MYTOOL.DLL

After saving the DTTools.ini file, you can start DT Vision Foundry.
Your new tool appears in both the Tools menu and the Miscellaneous
toolbar.

Customizing the Look of Your Tool

Now that you have the example change tool up and running with DT
Vision Foundry, you need to customize the example change tool for
your application by changing the tool’s name, bitmaps, icon, and help
file. You do this through the graphical interface of the integrated
resource editor of Visual C++. No programming is required.

Note: Do not rename the workspace or any of the files in the
workspace. Do not rename or change any ID’s in any of the files or
the RC file.

Editing the String Table in the RC File

To change the name that appears in the DT Vision Foundry tool
menu, the name of the help file, or the number of instances that the
tool can have, edit the string table of the DT_Tool.RC file.

The string associated with the ID DT_TOOL_MENU_TEXT is the
tool’s name that appears in the tools menu in the main application.
Change this text to the name you desire.

The string associated with the ID DT_TOOL_NUM_OF_INST is the
number of instances that can be created for this tool. In other words,
it is the number of tools that can be open at the same time for this
type of tool. The maximum number is 100 and the minimum number
is 1.
1075

Chapter 29

1076
The string associated with the ID DT_TOOL_HELP_FILE is the name
of the help file associated with this tool. If you have no help file, enter
NONE in this field. The help file must be placed in the same directory
as the tool, so you do not place the full path name in this field. Enter
the base name of the help file which includes the file name and the
.HLP extension (for example: MYTOOL.HLP).

Editing the Bitmaps and Icon in the RC File

Next, you need to change the tool’s icons. These are the icons that
appear in the toolbars and when the tool is iconized. The icons that
appear in the toolbars are the bitmaps in the RC file named “Pressed”
and “Unpressed.” They represent how the icons in the toolbars
appear when the buttons are selected (pressed) and unselected
(unpressed). The icon named IDI_TOOL is the icon given to the tool
when it is iconized.

When editing icons, change only the area inside the black rectangle.
so that all DT Vision Foundry icons look the same way. The icon and
the unpressed bitmap are the same in most cases, so when you like
how the icon looks, you can cut and paste the image into another
icon.

Editing the Dialog Box in the RC File

The tool itself is a dialog box. The dialog template for the tool is the
IDD_TOOL dialog. Set the caption of the dialog box to the same name
that you gave the tool in the DT_TOOL_MENU_TEXT ID in the
string table. This is a guideline for creating a tool because it simplifies
operation for the operator.

An example RC file with these changes is located in C:\Program
Files\Data Translation\DT Vision Foundry\C++ Devel\ Examples\
Tools\Change, by default.

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Note: In Visual C++, you can have more than one RC file open at a
time; therefore, you can cut and paste code from one file to another.

You are now done editing the RC file. Save the RC file and rebuild the
tool. Since the tool is already registered with DT Vision Foundry, you
can now run DT Vision Foundry and see your changes.

Note: In the sample RC file, the color of the depressed bitmap is
changed. Do not do this in your own tool.

Adding Functionality Using Command and Request
Messages

At this point you should have your own custom tool with its own
name, help file, and custom icons up and running with DT Vision
Foundry.

This part of the program adds an edit control to the tool so that an
operator can enter a value into it. Then, it adds a button, which when
clicked, changes all the pixel values in the image in the active
viewport to the value in the edit control with respect to the active
ROI.

Note: It is assumed that you know how to add a button and an edit
box to the dialog box using Visual C++. If you need more
information on this, refer to your Visual C++ documentation.
1077

Chapter 29

1078
The code for the dialog box procedure is in the modules c_CTool.CPP
and d_CTool.H (d_ stands for dialog box procedure and c stands for
class).

Note: The code for this step is located in C:\Program Files\Data
Translation\DT Vision Foundry\C++ Devel\Examples\Tools\
Change, by default. The code has error checking and variable
declaration removed to simplify the code and amplify the main idea
of how to use DT Vision Foundry messaging. All added code for this
section of the program has the comment //STEP2 above it. To
quickly see all the changes needed for this section of code, search for
this comment.

The procedure for the button click is as follows:

void CcDTTool::OnOk()
{
CcImage* CImage;
CcRoiBase* CRoi;

The steps required to implement this procedure are as follows:

1. Obtain a handle to the active viewport by sending the DT Vision
Foundry main application a message that asks for the active
viewport’s handle. If you do not receive a valid handle, abort the
program. The following code gets the handle of the active
viewport:

//Get Handle to Active Viewport
m_hActiveViewport=(HWND)::SendMessage(

m_hMainApplication,HL_GET_ACTIVE_VIEWPORT,
0,0L);

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

2. Using the handle to the active viewport, obtain a pointer to the
image by sending the request message
HLR_SUPPLY_IMAGE_OBJECT, and obtain a pointer to the
active ROI associated with the viewport by sending the request
message HLR_SUPPLY_ACTIVE_ROI_OBJECT. If either pointer
is not valid, abort the program.

You must cast the pointer to the type of object you are expecting.
In the case of both the image and the ROI, cast the pointers to
their base class pointers. Do not worry about the type of image or
the type of ROI since both of these objects contain virtual methods
where needed. For more information, see the ROI and Image
classes in Chapter 2 starting on page 11.

The following code illustrates how to get a pointer to the image
and to the ROI associated with the viewport:

//Send a message to the Active Viewport to
//Get its Image Pointer
CImage = (CcImage*)
::SendMessage(hActiveViewport,

HL_REQUEST,HLR_SUPPLY_IMAGE_OBJECT,0L);
//Get a pointer to the active ROI within the
//active viewport
CRoi=(CcRoiBase*)
::SendMessage(hActiveViewport,

HL_REQUEST,HLR_SUPPLY_ACTIVE_ROI_OBJECT,0L);

3. Using the image and ROI pointers, change the data in the image
to the new value with respect to the ROI by obtaining the x- and
y-coordinates for each point in the ROI, and then set the image at
these points to the new value:

//First get the location of the bounding
//rectangle for the given ROI (without
//knowing its type)

pstROI =(RECT*)CRoi->GetBoundingRect();

//Then go from the bottom of the ROI to its top,
1079

Chapter 29

1080
//getting the location of all pixels in each
//horizontal row

for(y=pstROI->bottom; y<pstROI->top; y++)
{

//Get pointer to array of x-locations of each
//pixel in this horizontal row for the given
//y-location

piRoiData=CRoi->GetXBoundary(y,&iNumOfROIPoints);

//Extract x-location for each point from array

for(z=0; z<iNumOfROIPoints; z++)
{x=piRoiData[z];

//Using X- and Y-location for each point,
//change image value
//First set data image pointer within image
//class to point to correct position
Image(x,y);

//Then set the new value for the pixel at this
//location. This is the value you extracted from
//the edit box that the user entered
Image=fNewValue;

}
}

4. Now that the image data has changed, redraw the image in the
viewport by sending the active viewport the command message
HLC_REDRAW_VIEW:

::SendMessage(hActiveViewport,
HL_COMMAND,HLC_REDRAW_VIEW,0L);

}

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

5. After adding this code to the dialog box procedure module
(d_CTool.cpp and d_CTool.h), rebuild the tool and test it by
running DT Vision Foundry. It should work the same way as the
DT Vision Foundry Pixel Change tool, but not as fast.

Adding Functionality Using Notification Messages

Notification messages are sent from the main application to the tools
when something significant happens in the main application. For
example, when the user activates a viewport, the main application
informs all open tools. In this example, the notification message is
processed and the name of the image is placed in the newly active
viewport in the button of the tool we just created. This section of the
code does not add any image processing functionality; it provides a
simple demonstration of how to use DT Vision Foundry notification
messages.

Note: The code for this is section of the program is located in
C:\Program Files\Data Translation\DT Vision Foundry\C++
Devel\Examples\Tools\Change, by default. All added code for this
section of the program has the comment //STEP3 above it. To
quickly see all the changes needed for this section of the program,
search for this comment.

When a viewport becomes active, the
HLN_VIEWPORT_ACTIVATED notification message is sent. To use
notification messages, edit the following section of code in the
example change tool:

//***//
//************* H L N O T I F Y ****************//
//***//
LRESULT CcDTTool::HLNotify(WPARAM,LPARAM)
{

1081

Chapter 29

1082
/*Start of Dec Section*/
/*End of Dec Section*/

switch(wParam)
 {
 case HLN_xxxxxxxx:

return(TRUE);
break;
}

return(TRUE);
}
//***//
//************ H L N O T I F Y *****************//
//***//

To use the HLN_VIEWPORT_ACTIVATED message, change this
code to the following:

//************* H L N O T I F Y *****************//
LRESULT CcDTTool::HLNotify(WPARAM wParam,

LPARAM lParam)
{
/*Start of Dec Section*/
 char* cName;
 CcImage* CImage;
 CButton* CButton1;
/*End of Dec Section*/

switch(wParam)
 {
case HLN_VIEWPORT_ACTIVATED:

//Get pointer to button object
 CButton1 = (CButton*)GetDlgItem(ID_OK);
 if(CButton1==NULL) return(TRUE);
//Cast lParam to the active viewport given with
//message
 hActiveViewport = (HWND)lParam;
//Send a request message to the active viewport

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

//requesting its associated image
 CImage = (CcImage*)
 ::SendMessage(hActiveViewport,

HL_REQUEST,HLR_SUPPLY_IMAGE_OBJECT,0);
 if(CImage==NULL)
 {CButton1->SetWindowText("");
 return(TRUE);}

//Get name of image from image object and set this
//text to the button

cName = CImage->GetName();
CButton1->SetWindowText(cName);

return(TRUE);
break;

}
return(TRUE);
}
//************* H L N O T I F Y *****************//

For the message HLN_VIEWPORT_ACTIVATED, the handle to the
newly activated viewport is given in lParam. For more information on
this parameter, refer to the HLN_VIEWPORT_ACTIVATED message
on page 997. Cast this value to HWND to obtain a usable handle to
the active viewport. Using this handle, you can send a request
message to the active viewport to request its Image object. Once you
have the Image object, ask for its name by calling the method
GetName(). Then, place the name of the image into the button.

All notification messages get routed to all tools using the HLNotify()
method. You do not (and should not) need to route any notification
messages yourself. You can place as many notification messages in
the above switch statement as you like. All notification messages are
processed the same way as this one.

After adding this code, rebuild your tool and run DT Vision Foundry.
Each time you click a new viewport with an image in it, you should
see the name of the image in the button on your tool.
1083

Chapter 29

1084
Note: The variable hActiveViewport is declared in the above code.
You also could have used m_hActiveViewport. m_hActiveViewport is
provided for your convenience but is not required.

Separating the Tool into Modules

If the new functionality of your tool is contained within the dialog
box procedure module, the functionality cannot be used by other
tools or other image processing/machine vision applications. If,
however, you separate the image processing functionality into its
own module, any application or tool can use it.

Note: The code for this section of the program is located in
C:\Program Files\Data Translation\DT Vision Foundry\C++
Devel\Examples\Tools\Change, by default. All added code for this
section of the program has the comment //STEP4 above it. To
quickly see all the changes needed for this section of the program,
search for this comment.

Add the module c_ezchg.cpp to your project.

The following code is responsible for the change functionality in the
current example tool:

pstROI =(RECT*)CRoi->GetBoundingRect();
for(y=(int)pstROI->bottom; y<(int)pstROI->top; y++)

{

piRoiData=CRoi->GetXBoundary(y,&iNumOfROIPoints);
for(z=0; z<iNumOfROIPoints; z++)
{
x=piRoiData[z];

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Image(x,y);
Image=fNewValue;
}

}

To separate the functionality of the tool from the user interface, place
the code that performs the change operation in a public method of a
class. The parameters for the method of the class are the objects that
are used in the calculations. For example, we could use the following
method of the CcChange class (with error checking and variable
declaration removed):

int CcChange::Change(CcImage* Cimage,
CcRoiBase* Croi, float fNewValue)

{
CcImage &Image = CImage;
pstROI =(RECT*)CRoi->GetBoundingRect();
for(y=(int)pstROI->bottom; y<(int)pstROI->top; y++)
{
piRoiData=CRoi->GetXBoundary(y,&iNumOfROIPoints);
for(z=0; z<iNumOfROIPoints; z++)
{x=piRoiData[z];
 Image(x,y);
 Image=fNewValue;}
}
return(0);
}

Now any tool or application can use the change functionality by
using this class.

All the code necessary to rebuild the example change tool is provided
in C:\Program Files\Data Translation\DT Vision Foundry\C++
Devel\Examples\Tools\Change, by default. Not only does this code
give you an example of how to create your own tool and separate a
tool into modules, it gives you an example of how to speed up the
execution of your tool’s functionality.
1085

Chapter 29

1086
Speeding Up the Execution of a Tool
You can use an image processing and machine vision software
package to either derive image processing algorithms or execute
already known and established algorithms. This section explores
these two uses in more detail.

Deriving Algorithms with DT Vision Foundry

When deriving image processing algorithms, it is nice to work in a
simple environment. This lets you concentrate on the algorithm and
not on computer programming. It is also important to try different
image types when deriving algorithms, such as 8-bit grayscale, 32-bit
grayscale, floating-point grayscale, or 24-bit RGB color images.
Again, this lets you concentrate on the algorithm, and not on scaling,
overflow, and data loss due to the limitations of the variable type
holding the pixel values. DT Vision Foundry provides such an
environment through its image classes.

For example, assume that you want to derive a convolution image
processing algorithm. Also assume that you want to create a method
that takes an input image, an output image, and a rectangular ROI
and calculates the summation of the center pixel and all of its
four-connected neighbors for each point in the ROI. The calculated
sum is then placed in the output image in the same location as the
center point of the input image.

Without worrying about image types, you could write the following
method:

void EZSum(CcImage* CImageIn, CcImage* CImageOut,
RECT* stROI)

{
int x,y;
CcImage& ImageIn = *CImageIn;
CcImage& ImageOut = *CImageOut;

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

for(y=stROI->bottom; y<stROI->top; y++)
for(x=stROI->left; x<stROI->right; x++)
{
ImageOut(x,y);

ImageOut
= ImageIn(x,y)
+ ImageIn(x-1,y) + ImageIn(x+1,y)
+ ImageIn(x,y-1) + ImageIn(x,y+1);
}
}

Note: X,Y represents the center pixel coordinates relative to the
lower-left corner (0,0) of the image.

After writing the method, you can then call the method from a
created tool. You can use the other tools to analyze and view the
image data produced by this method. For example, you could use the
Memory Images tool to test this method with different types of
images to see their effects. Remember, the above code works on 8-bit,
32-bit, and floating-point grayscale images as well as 24-bit RGB color
images. It also works with your own image types, if you need to
derive one.

Executing Algorithms with DT Vision Foundry

After you have derived an algorithm, you will most likely want to
run it repeatedly. If you are running a machine vision application on a
manufacturing line or controlling a real-time process, you may need
the algorithm to run extremely fast.
1087

Chapter 29

1088
The highlights of the algorithm that you just wrote are as follows:

• It works with any image type.

• It is easy to read and understand.

• It is easy to debug.

• It has built-in error checking so you cannot crash the system.

However, it does not execute as fast as if you were to access the image
data directly using pointers.

For some applications, the algorithm will execute fast enough; for
others, however, the code will execute too slowly. DT Vision Foundry
provides the mechanisms to easily access the image data directly. All
Image objects contain a method that return a pointer to their image
data. They also have a method that lets you know what type of image
you are dealing with. For example, GetBitMapImageData() returns
a pointer to the image data, and GetImageType() returns the type of
image you are dealing with. You can use these and other methods to
speed up your algorithms by accessing the image data directly.

In the following code example (method FastSum), the algorithm is
rewritten to speed up its execution. First, the pointers to each pixel
that is accessed are calculated. Using the pointers, the pixels are then
summed. For each consecutive center point along the horizontal row,
all the pointers are incremented by 1; the pixels are then summed
again. This process then repeats.

The pixels are arranged in the standard convolution format, shown in
Table 50, (where 5 is the center pixel).

Table 50: Standard Convolution Format

7 8 9

4 5 6

1 2 3

Creating DT Vision Foundry Tools

2

2

2

2

2

29

29

29

2

Note: You lose the ability to handle all image types with the same
code, so this example is for 32-bit input images only. Because no
pointers are used for the output image, you can use any type of
image. To further speed up the calculation, you can use pointers for
the output image.

The example change tool makes use of both of these methods; all
code for the example change tool is located in C:\Program
Files\Data Translation\DT Vision Foundry\C++ Devel\Examples\
Tools\Change, by default.

void FastSum(CcGrayImageInt32* CImageIn,CcImage*
CImageOut,RECT* stROI)

{
int x,y;
int iDibHeight,iDibWidth;

long lIndex;
int *InputData;
int *p5;//Center pixel
int *p2,*p4,*p6,*p8; //4 connected neighbors
int *pEnd;

//Check Input Image's type
if(CImageIn->GetImageType() != IMAGE_TYPE_32BIT_GS
)
return(-1);

//Get Height & Width of Input Image
CImageIn->GetHeightWidth(&iDibHeight,&iDibWidth);

//Get Pointer to Input Image Data
InputData = (int*) CImageIn->GetBitMapImageData();
1089

Chapter 29

1090
//Go through ROI from Bottom to Top
for(y=stROI->bottom; y<stROI->top; y++)
{
//Assign Pointers for Input Image for 3x3 Kernel
lIndex = iDibWidth*y + stROI->left;

p5=&InputData[lIndex];
p4=p5-1; p6=p5+1;
p2=p5 - iDibWidth;
p8=p5 + iDibWidth;

lIndex = iDibWidth*y + stROI->right;
pEnd = &InputData[lIndex];

x=stROI->left;

//Sum points along this horizontal row
while(p5 < pEnd)
{
ImageOut(x++,y);
ImageOut =
*p2++ + *p4++ + *p5++ + *p6++ + *p8++;
}
}

//Tell Image to Rescale its data when showing
CImageOut->ReScaleImageOnShow();
}

A
Vendor-Specific Properties and

Values
1091

Appendix A

1092
The SetDeviceProperty and GetDeviceProperty methods of the
Picture tool, described starting on page 712, require values for the
nPropId and nValue parameters.

The values for the parameters when using the MACH I Series, which
include the DT3152, DT3152-LS, DT3153, DT3154, DT3155, DT3157,
DT3120, and DT3130 Series boards, are listed in Table 51 on page
1093.

The values for the parameters when using the MACH II Series, which
currently includes the DT3162 board only, are listed in Table 52 on
page 1112.

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards

nPropID Description
Boards

Supported nValue

ActiveLine

Count

Sets and returns the height

of the active video area.

DT3152

DT3152-LS

DT3157

For DT3152 and

DT3152-LS, 1 to

4096.

For DT3157, 1 to

4096 in
single-channel

mode, or 2 to 4096

in dual-channel
mode.

ActivePixel

Count

Sets and returns the width

of the active video area.

DT3152

DT3152-LS
DT3157

For DT3152 and

DT3152-LS, 4 to
4096.

For the DT3157, 4 to
4096 in

single-channel

mode, or 32 to 1024
in dual-channel

mode.

BackPorch
Start

Sets and returns the start of
the back porch.

DT3152
DT3152-LS

0 to 4095

BlueOffset Sets and returns the blue

offset value.

DT3154 0 to 305,550 µV

Blue

Reference

Sets and returns the blue

reference value.

DT3154 338,000 to

1,199,966 µV
1093

Appendix A

1094
Brightness Sets and returns the
brightness level.

DT3153
DT3120

DT3130

Series

0 to 255, where 0
represents the least

brightness and 255

represents the most
brightness.

ClampEnd Sets and returns the clamp

end position.

DT3152

DT3152-LS

0 to 4095

ClampStart Sets and returns the clamp

start position.

DT3152

DT3152-LS

0 to 4095

Clock
Frequency

Sets and returns the
frequency of the internal

pixel clock.

DT3152
DT3152-LS

DT3157

1000 to
20,000,000 Hz

ClockSource Sets and returns the pixel
clock source.

DT3152
DT3152-LS

DT3157

ExternalClock
(clocking is

generated by an

outside source), or
InternalClock
(clocking is

generated by the
frame grabber

board).

Clock
Transition

Sets and returns the edge
at which an external pixel

clock pulse occurs.

DT3152
DT3152-LS

DT3157

OnHighToLow
(increment clock on

a falling edge), or

OnLowToHigh
(increment clock on

a rising edge).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

Contrast Sets and returns the
contrast level.

DT3153
DT3120

DT3130

Series

0 to 511, where 0
represents the least

contrast and 511

represents the most
contrast.

DigitalCamera

Type

Sets and returns the type of

the currently attached
digital camera.

DT3157 CAM_10BIT (10-bit

video from one
digital input line),

CAM_12BIT (12-bit

video from one
digital input line),

CAM_14BIT (14-bit

video from one
digital input line),

CAM_16BIT (16-bit

video from one
digital input line),

CAM_8BIT_DUAL (

8-bit video from two
digital input lines), or

CAM_8BIT_SINGL
E (8-bit video from
one digital input

line).

EnableExpose
Pulse

Enables and disables the
generation of an exposure

pulse to a digital camera.

DT3157 True (the exposure
pulse is enabled),

False (the exposure

pulse is disabled).

ExposePulse

Duration

Sets and returns the

exposure pulse width.

DT3157 82 µs to 1.33 s

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1095

Appendix A

1096
ExposePulse
Polarity

Sets and returns the active
state of the exposure pulse

(active high or active low).

DT3157 ActiveHigh (the
exposure pulse is

active when the

signal is high), or
ActiveLow (the

exposure pulse is

active when the
signal is low).

FirstActive

Line

Sets and returns the

top-most pixel in the active
video area.

DT3152

DT3152-LS
DT3157

DT3120

DT3130
Series

For the DT3152,

DT3152-LS, and
DT3157, 0 to 4095.

For the DT3120 and
DT3130 Series, 0 to

255.

FirstActive
Pixel

Sets and returns the
left-most pixel in the active

video area.

DT3152
DT3152-LS

DT3157

DT3120
DT3130

Series

For the DT3152 and
DT3152-LS, 0 to

4095.

For the DT3175, 4 to

4095.

For the DT3120 and

DT3130 Series, 0 to

255.

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

FrameLeft Returns the position of the
first pixel in the active frame

buffer.

DT3152
DT3152-LS

DT3153

DT3154
DT3157

DT3120

DT3130
Series

For the DT3152,
DT3152-LS, and

DT3157, 0 to 4095.

For the DT3153 and

DT3154, 0 to 767

(50 Hz) or to 636 (60
Hz).

For the DT3120 and
DT3130 Series, 0 to

763 (50 Hz) or to

635 (60 Hz).

FrameTop Returns the position of the

first line in the active frame

buffer.

DT3152

DT3152-LS

DT3153
DT3154

DT3157

DT3120
DT3130

Series

For the DT3152,

DT3152-LS, and

DT3157, 0 to 4095.

For the DT3153,

DT3120, and
DT3130 Series, 0 to

575 (50 Hz) or to

479 (60 Hz).

For the DT3154, 0 to

572 (50 Hz) or to
476 (60 Hz).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1097

Appendix A

1098
FrameType Returns the type of frame
(or field) that you want to

acquire in the active frame

buffer.

All MACH I
Series

boards

For the DT3152,
DT3152-LS, and

DT3154

InterlacedStartOn
Even (acquire

interlaced frames,

starting with the next
even field of an

interlaced frame),

InterlacedStartOn
Next (acquire

interlaced frames,

starting with the next
field (of any kind) of

an interlaced frame),

InterlacedStartOn
Odd (acquire

interlaced frames,

starting with the next
odd field of an

interlaced frame), or

NonInterlaced
(acquire

noninterlaced

frames, starting with
the next field of a

noninterlaced

frame).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

FrameType
(cont.)

Returns the type of frame
(or field) that you want to

acquire in the active frame

buffer.

All MACH I
Series

boards

For DT3153 and
DT3155,

InterlacedStartOn
Even (acquire
interlaced frames,

starting with the next

even field of an
interlaced frame),

InterlacedStartOn
Next (acquire
interlaced frames,

starting with the next

field (of any kind) of
an interlaced frame),

or InterlacedStart
OnOdd (acquire
interlaced frames,

starting with the next

odd field of an
interlaced frame).

For DT3157,
DefaultFrame
(acquire

fields/frames of the
default type).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1099

Appendix A

1100
FrameType
(cont.)

Returns the type of frame
(or field) that you want to

acquire in the active frame

buffer.

All MACH I
Series

boards

For the DT3120 and
DT3130 Series,

InterlacedStartOn
Even (acquire
interlaced frames,

starting with the next

even field of an
interlaced frame),

InterlacedStartOn
Next (acquire
interlaced frames,

starting with the next

field (of any kind) of
an interlaced frame),

InterlacedStartOn
Odd (acquire
interlaced frames,

starting with the next

odd field of an
interlaced frame),

EvenField (acquire

even fields, starting
with the next even

field), or OddField
(acquire odd fields,
starting with the next

odd field).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

Gain Sets and returns the gain. DT3152
DT3152-LS

GAIN_OF_1,
GAIN_OF_2,

GAIN_OF_4, or

GAIN_OF_POINT_5
(gain of 0.5).

GreenOffset Sets and returns the green

offset value.

DT3154 0 to 305,550 µV

Green

Reference

Sets and returns the green

reference value.

DT3154 338,000 to

1,199,966 µV

Horizontal
Frequency

Sets and returns the
frequency of the horizontal

sync signal for Sync Master

mode.

DT3152
DT3152-LS

DT3157

1 to 2,000,000 Hz.

Horizontal

PulseWidth

Sets and returns the width

of the horizontal sync signal

for Sync Master mode.

DT3152

DT3152-LS

DT3157

250 to

950,000,00 ns

Horizontal

Transition

Sets and returns the edge

at which the horizontal sync

signal occurs for
variable-scan video signals.

DT3152

DT3152-LS

OnHighToLow

(horizontal

transitions occur on
a falling edge), or

OnLowToHigh

(horizontal
transitions occur on

a rising edge).

HSyncInsert
Pos

Sets and returns the
horizontal sync insert

position.

DT3152
DT3152-LS

DT3157

The percentage of
total pixels per line,

multiplied by 100.

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1101

Appendix A

1102
HSyncSearch
Pos

Sets and returns the
horizontal sync search

position.

DT3152
DT3152-LS

DT3157

The percentage of
total pixels per line,

multiplied by 100.

Hue Sets and returns the hue
level.

DT3153
DT3120

DT3130

Series

0 to 255, where 0
represents red and

255 represents

purple.

InputFilter Sets and returns the type of

input filter used.

DT3152

DT3152-LS

DT3155

For the DT3152 and

DT3152-LS,

AC_50Hz_Filter (
AC coupled with

50 Hz (4.43 MHz)

filter),
AC_60Hz_Filter (
AC coupled with

60 Hz (3.58 MHz)
filter), AC_No_Filter
(AC coupled with no

filter), or
DC_No_Filter (DC

coupled with no

filter).

For the DT3155,

AC_50Hz_Filter (
AC coupled with

50 Hz (4.43 MHz)

filter),
AC_60Hz_Filter
(AC coupled with

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

InputFilter
(cont.)

Sets and returns the type of
input filter used.

DT3152
DT3152-LS

DT3155

60 Hz (3.58 MHz)
filter), or

AC_No_Filter (AC

coupled with no
filter).

InputLUT Sets and returns the ILUT

to use.

DT3152

DT3152-LS
DT3154

DT3155

DT3157

For the DT3152,

DT3152-LS,
DT3155, and

DT3157, one ILUT is

available (0).

For the DT3154, six

ILUTs are available
(0 for RVID0, 1 for

GVID0, 2 for BVID0,

3 for RVID1, 4 for
GVID1, or 5 for

BVID1).

MultTrigger
Mode

Sets and returns the trigger
mode for a multiple-frame

acquisition.

All MACH I
Series

boards

For the DT3152,
DT3152-LS,

DT3153, DT3154,

DT3155, DT3120,
and DT3130 Series,

TriggerForEach (a

separate trigger
starts the acquisition

of each frame in a

series of multiple
frames), or

TriggerToStart (a

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1103

Appendix A

1104
MultTrigger
Mode (cont.)

Sets and returns the trigger
mode for a multiple-frame

acquisition.

All MACH I
Series

boards

single trigger starts
the acquisition of a

series of multiple

frames).

For the DT3157,

TriggerToStart (a
single trigger starts

the acquisition of a

series of multiple
frames).

MultTrigger

Transition

Sets and returns the edge

at which an external trigger
occurs for a multiple-frame

acquisition.

All MACH I

Series
boards

OnHighToLow
(trigger on a falling
edge), or

OnLowToHigh
(trigger on a rising
edge).

MultTrigger

Type

Sets and returns the trigger

type (software or external)
for a multiple-frame

acquisition.

All MACH I

Series
boards

ExternalTrigger (
the frame grabber
board is triggered

through a dedicated

external line), or
SoftwareTrigger
(external triggers are

disabled. The frame
grabber board is

triggered through a

software command).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

Offset For monochrome frame
grabber boards, sets and

returns the offset voltage.

DT3152
DT3152-LS

DT3155

For the DT3152 and
DT3152-LS,

-1,075,200 to

1,066,800 µV.

For the DT3155,

-306,000 to
-1.275 µV.

Phase Sets and returns the phase

between the horizontal and
vertical sync signals for

Sync Master mode.

DT3152

DT3152-LS
DT3157

The percent of the

total line that the
vertical sync is

shifted relative to the

horizontal sync,
multiplied by 100.

RedOffset Sets and returns the red

offset value.

DT3154 0 to 305,550 µV

RedReference Sets and returns the red

reference value.

DT3154 338,000 to

1,199,966 µV

Reference For monochrome frame
grabber boards, sets and

returns the reference

voltage.

DT3152
DT3152-LS

DT3155

For the DT3152 and
DT3152-LS, 0 to

1,275,000 µV.

For the DT3155,

45,100 to

1,007,725 µV.

SyncMaster

Enabled

Enables and disables Sync

Master mode.

DT3152

DT3152-LS

DT3153
DT3157

True (Sync Master

mode is enabled), or

False (Sync Master
mode is disabled).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1105

Appendix A

1106
SyncSentinel Enables and disables the
Sync Sentinel.

DT3152
DT3152-LS

DT3154

DT3155
DT3157

True (Sync Sentinel
is enabled), or

False (Sync Sentinel

is disabled).

SyncSource Sets and returns the sync

source for composite video
signals.

DT3152

DT3152-LS
DT3153

DT3154

DT3155
DT3120

DT3130

Series

For the DT3152,

DT3152-LS, and
DT3155, Channel0,

Channel1,

Channel2, or
Channel3.

For the DT3153,
DT3120, and

DT3130 Series,

CurrentSource (the
channel currently

being digitized).

For the DT3154,

Channel0 (RVID0),

Channel1 (GVID0),
Channel2 (BVID0),

Channel3 (RVID1),

Channel4 (GVID1),
Channel5 (BVID1),

or ExternalLine (an

external sync
source).

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

SyncThresh Sets and returns the sync
threshold for composite

video signals.

DT3152
DT3152-LS

DT3154

DT3155

For the DT3152,
DT3152-LS,

DT3155, 50, 75,

100, or 125 mV.

For the DT3154, 50

or 125 mV.

TotalLinesPer

Field

Sets and returns the size of

the entire area between two

consecutive vertical sync
signals.

DT3152

DT3152-LS

DT3157

1 to 4096

TotalPixels

PerLine

Sets and returns the size of

the entire area between two
consecutive horizontal sync

signals.

DT3152

DT3152-LS
DT3157

4 to 4096

Trigger
Transition

Sets and returns the edge
at which an external trigger

occurs for a single-frame

acquisition.

DT3152
DT3152-LS

DT3153

DT3154
DT3155

DT3120

DT3130
Series

OnHighToLow
(trigger on a falling

edge) or

OnLowToHigh
(trigger on a rising

edge)

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1107

Appendix A

1108
TriggerType Sets and returns the trigger
type (software or external)

for a single-frame

acquisition.

All MACH I
Series

boards

ExternalTrigger
(the frame grabber

board is triggered

through a dedicated
external line), or

SoftwareTrigger
(external triggers are
disabled. The frame

grabber board is

triggered through a
software command).

USaturation Sets and returns the

U-saturation level.

DT3153

DT3120
DT3130

Series

0 to 511, where 0

represents all white
and 511 represents

pure color (green

and red) with no
white.

Vertical

Frequency

Sets and returns the

frequency of the vertical
sync signal for Sync Master

mode.

DT3152

DT3152-LS
DT3157

For the DT3152 and

DT3152-LS, 1 to
200,000 Hz.

For the DT3157,
0.00024 to

488.28 Hz.

VerticalPulse
Width

Sets and returns the width
of the vertical sync signal

for Sync Master mode.

DT3152
DT3152-LS

DT3157

For the DT3152 and
DT3152-LS, 250 to

950,000,000 ns.

For the DT3157, 500

to 950,000,000 ns.

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

Vertical
Transition

Sets and returns the edge
at which the vertical sync

signal occurs for

variable-scan video signals.

DT3152
DT3152-LS

OnHighToLow
(vertical transitions

occur on a falling

edge), or
OnLowToHigh
(vertical transitions

occur on a rising
edge).

VideoSignal

Type

Sets and returns the type of

video signal (composite,
variable-scan, Y/C, or

RGB).

All MACH I

Series
boards

For the DT3152 and

DT3152-LS,
CompositeVideo
(horizontal and

vertical syncs are
combined into one

signal), or

VarScanVideo
(variable-scan video;

horizontal and

vertical syncs are on
separate signals).

For the DT3153,
DT3120, and

DT3130 Series,

CompositeVideo
(horizontal and

vertical syncs are

combined into one
signal), or YCVideo

(luminance (Y)

information and

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1109

Appendix A

1110
VideoSignal
Type (cont.)

Sets and returns the type of
video signal (composite,

variable-scan, Y/C, or

RGB).

All MACH I
Series

boards

color (C) information
are stored

separately).

For the DT3154,

RGBVideo (red,

green and blue
image data reside

on separate signals).

For the DT3155,

CompositeVideo
(horizontal and
vertical syncs are

combined into one

signal).

For the DT3157,

VarScanVideo
(variable-scan video;

horizontal and

vertical syncs are on
separate signals).

VSaturation Sets and returns the

V-saturation level.

DT3153

DT3120
DT3130

Series

0 to 511, where 0

represents all white
and 511 represents

pure color (blue and

green) with no white
.

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

VSyncInsert
Pos

Sets and returns the vertical
sync insert position.

DT3152
DT3152-LS

DT3157

The percentage of
the total lines per

field, multiplied by

100.

VSyncSearch

Pos

Sets and returns the vertical

sync search position.

DT3152

DT3152-LS

DT3157

The percentage of

the total lines per

field, multiplied by
100.

Table 51: Property IDs for MACH I Series (DT3152, DT3152-LS, DT3153,
DT3154, DT3155, DT3157, DT3120, and DT3130 Series) Boards (cont.)

nPropID Description
Boards

Supported nValue
1111

Appendix A

1112
Table 52: Prop IDs for MACH II Series (DT3162) Boards

nPropID Description nValue

AcquireType Sets and returns the type of
frames/fields to acquire.

Progressive (acquire
progressive scans -

noninterlaced frames - starting

with the next field),
Interlaced (acquire interlaced

frames - the starting field

depends on the value set for
FirstActiveLine and RoiTop),

InterlacedEvenFieldOnly
(acquire even fields of
interlaced frames, starting with

the next even field),

InterlacedOddFieldOnly
(acquire odd fields of interlaced

frames, starting with the next

odd field).

ActiveLineCount Sets and returns the

number of lines per frame in

the active video area.

1 to 2047, in increments of 1

ActiveLUT Sets and returns the

look-up table (LUT) that you

want to use.

0 or 1

ActivePixelCount Sets and returns the

number of pixels per line in

the active video area.

1 to 2047, in increments of 1

Brightness Sets and returns the

brightness level for the

incoming video.

0 to 255, where decreasing

values make the digitized video

darker and increasing values
make the digitized video lighter.

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

ClampEnd Sets and returns the clamp

end position.

0 to 4095, in increments of 1

ClampStart Sets and returns the clamp

start position.

0 to 4095, in increments of 1

Contrast Sets and returns the
contrast level for the

incoming video.

0 to 99, where decreasing
values contract the grayscale

range of the digitized video and

increasing values stretch the
grayscale range of the digitized

video.

ExposeEnabled Enables and disables the
expose/reset pulse.

True (the expose/reset pulse is
enabled), or False (the

expose/reset pulse is disabled).

ExposePolarity Sets and returns the
polarity of the expose/reset

pulse

ActiveHigh (high-going pulse),
or ActiveLow (low-going

pulse).

ExposeStartLine Sets and returns the start
position of the expose/reset

pulse.

1 to 65,535, in increments of 1

ExposeStopLine Sets and returns the stop
position of the expose/reset

pulse.

1 to 65,535, in increments of 1

FirstActiveLine Sets and returns the
position of the beginning of

the active video signal

within the field.

0 to 2047, in increments of 1

FirstActivePixel Sets and returns the

position of the beginning of

the active video signal on
the line.

0 to 4095, in increments of 1

Table 52: Prop IDs for MACH II Series (DT3162) Boards (cont.)

nPropID Description nValue
1113

Appendix A

1114
HSyncInPolarity Sets and returns the

polarity of the horizontal
(line) sync of an incoming

variable-scan video signal.

ActiveHigh (high-going

horizontal sync), or ActiveLow
(low-going horizontal sync).

HSyncOutPulse
Width

Sets and returns the width
of the outgoing horizontal

sync pulse.

1 to 4095, in increments of 1

LineFrequency Sets and returns the
frequency of a horizontal

video line (how often the

line occurs).

1 to 65,535, in increments of 1

PixelClock

Source

Sets and returns the pixel

clock source.

InternalClock (clocking is

generated by the device),

ExternalSource1 (clocking is
generated by an external TTL

signal provided to the device),

or ExternalSource2 (clocking
is generated by an external

differential signal provided to

the device).

RoiHeight Sets and returns the

number of lines in the ROI

that you want to save.

1 to 2048, in increments of 1

RoiLeft Sets and returns the

position of the first pixel of

the ROI that you want to
save, relative to the active

video area.

0 to 2039, in increments of 1

Table 52: Prop IDs for MACH II Series (DT3162) Boards (cont.)

nPropID Description nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

RoiTop Sets and returns the

position of the first line of
the ROI that you want to

save, relative to the active

video area.

0 to 2047, in increments of 1

RoiWidth Sets and returns the

number of pixels in each

line of the ROI that you
want to save.

8 to 2048, in increments of 8

StrobeEnabled Enables and disables the

strobe output pulse.

True (the strobe pulse is

enabled), or False (the strobe
pulse is disabled).

StrobePolarity Sets and returns the

polarity of the strobe output
pulse.

ActiveHigh (high-going pulse),

or ActiveLow (low-going
pulse).

StrobeStartLine Sets and returns the start

position of the strobe output
pulse.

1 to 65,535, in increments of 1

StrobeStopLine Sets and returns the stop

position of the strobe output
pulse.

1 to 65,535, in increments of 1

Table 52: Prop IDs for MACH II Series (DT3162) Boards (cont.)

nPropID Description nValue
1115

Appendix A

1116
SyncInSource Sets and returns the source

of the incoming sync signal.

InternalSync (the horizontal

and vertical syncs are
extracted from the incoming

video signal as is the case for

composite signals), or
ExternalSync (the horizontal

and vertical syncs come from

the external horizontal and
vertical sync input lines as is

the case for variable-scan

signals).

SyncOutEnabled Enables/disables the

outgoing sync signal.

True (the outgoing sync signal

is enabled), or False (the

outgoing sync signal is
disabled).

SyncOutPolarity Sets and returns the

polarity of the outgoing sync
pulses.

ActiveHigh (high-going

pulses.) or ActiveLow
(low-going pulses).

TotalLinesPer

Frame

Sets and returns the total

number of lines in a frame
of video.

1 to 4095, in increments of 1

TotalPixelsPer

Line

Sets and returns the total

number of pixels in a single
horizontal line of video (the

number of pixels that are

not black).

1 to 4095, in increments of 1

TriggerTransition Sets and returns the

transition type for an

external line used to trigger
an acquisition.

OnHighToLow (trigger on a

falling edge), or OnLowToHigh

(trigger on a rising edge).

Table 52: Prop IDs for MACH II Series (DT3162) Boards (cont.)

nPropID Description nValue

Vendor-Specific Properties and Values

A

A

A

A

A

A

A

A

A

TriggerType Sets and returns the trigger

type.

ExternalForEach (a separate

external trigger starts the
acquisition of each frame/field

in a series of frames/fields),

ExternalToStart (a single
external trigger starts the

acquisition of all frames/fields

in a series of frames/fields), or
Internal (external triggers are

disabled - the acquisition of

frames/fields is triggered by
calling the AcquireMem

method).

VSyncDelay Sets and returns the
number of lines between

the end of the expose/reset

pulse and the beginning of
the vertical sync.

1 to 65,535, in increments of 1

VSyncInPolarity Sets and returns the

polarity of the vertical (field)
sync of an incoming

variable-scan video signal.

ActiveHigh (high-going vertical

sync), or ActiveLow (
low-going vertical sync).

VSyncOutPulse
Width

Sets and returns the width
of the outgoing vertical sync

pulse.

1 to 4095, in increments of 1

Table 52: Prop IDs for MACH II Series (DT3162) Boards (cont.)

nPropID Description nValue
1117

Appendix A

1118

Index
Symbols
~CcCalibration 197
~CcCurve 140
~CcDeviceManager 208
~CcGraph 150
~CcImage 26
~CcList 180
~CcROIBase 103

Numerics
24-bit HSL specialized methods 89

DoConvert 94
GetAccess 90
GetBitmapImageDataHSL 93
SetAccess 90
SetClipping 95
ThresholdImageHSL 91
UpdateRGB 95

24-bit RGB specialized methods 84
GetAccess 86
SetAccess 85
ThresholdImageRGB 87

A
ABS 410
AcquireImage 765
Add/AddHSL 225
Add/AddRGB 225
AddImage 648
AddLineOfText 916

algorithms
deriving 1086
executing 1087

AngleAtMiddlePoint 560
AngleBoundingRect 606
AngleFromXaxis 562
Area 563
Arithmetic tool 221
AverageProfile 666
AvgDistance 554
AVI Player tool 265
axis methods 158

GetMinMaxValues 159
SetMinMaxValues 158

B
Barcode methods

GetAutothreshold 303
GetBCOptions 287
GetLPOptions 289
ReadBarcode 292
ReadTable 293
RestoreOptions 295
SaveOptions 296
SetAutothreshold 302
SetBCOptions 297
SetLPOptions 300

Barcode tool 285
Base Class object 14
BeginThresholding 39
bitmaps 1076
Blob Analysis tool 307
1119

Index

1120
BlueAverage 584
BlueValue 593
branching 403
BuildCatalog 378, 648

C
CalculateAllInfo 329
Calibration class 196
calibration methods 82, 198

ClearCalibrationObject 84
DoCalibration 198
GetCalibrationObject 83
SetCalibrationObject 82

Calibration objects 196
CancelWAVPlay 903
CcArithmetic class 222
CcArithmetic methods

Add/AddRGB 225
Copy/CopyRGB/CopyHSL 259
Div/DivRGB/DivHSL 240
LogicalAnd 245
LogicalOr 250
LogicalXOR 255
Mul/MulRGB/MulHSL 235
Sub/SubRGB/SubHSL 230

CcAVI class 266
CcAVI methods

Close 271
Create 270
GetCompatibleImage 279
GetFrameCount 276
GetFrameDimensions 277
GetFrameType 278
IsOpenForReading 272
IsOpenForWriting 274
Open 269

ReadFrame 280
SetColorImageType 268
WriteFrame 282

CcBarCode object 286
CcBlob methods

CalculateAllInfo 329
DeleteChildrenOnDestruction 337
GetBlobStats 332
GetBoundingRect 327
GetChildBlobList 334
GetFreehandROI 333
GetNumofChildBlobs 335
GetParent 327
GetPerimeterChainCode 328
GetPerimeterPG 328
GetRemoveBoundaryBlobFlag 343
SetRemoveBoundaryBlobFlag 342

CcBlob object 308
CcBlobFinder methods

FindChildren 323
GetBlobList 325
GetBlobStatsFlags 322, 341
GetMaxBlobHeight 316
GetMaxBlobSize 314
GetMaxBlobWidth 318
GetMinBlobHeight 315
GetMinBlobSize 312
GetMinBlobWidth 317
GrowBlobs 324
SetBlobStatsFlags 318, 338
SetMaxBlobHeight 315
SetMaxBlobSize 313
SetMaxBlobWidth 317
SetMinBlobHeight 314
SetMinBlobSize 312
SetMinBlobWidth 316

CcBlobFinder object 308

Index
CcCalibration 197
CcChange methods

Change 797
ChangeOverlay 802
ChangeRGB 799

CcChange object 796
CcContour methods

BuildCatalog 378
ClassifyContours 383
CleanCatalog 374
CleanIUTList 374
Get3Drotation 365
GetAngleDelimiting 366
GetCatalogCount 375
GetCatalogString 380
GetCenterAngleA 368
GetCenterAngleB 369
GetCenterAngleG 369
GetComparisonDepth 367
GetError 377
GetExtendedClassification 366
GetIUTCount 376
GetNegAngleA 370
GetNegAngleB 370
GetNegAngleG 371
GetPosAngleA 372
GetPosAngleB 372
GetPosAngleG 373
GetResult 383
GetResultsCount 375
GetScaleMax 368
GetScaleMin 367
LoadCatalog 382
MakeImageOfCATList 384
MakeImageOfIUTList 385
NameCatalogElements 379
RebuildCatalog 379

SaveCatalog 381
Set3Drotation 352
SetAngleDelimiting 355
SetCenterAngleA 358
SetCenterAngleB 359
SetCenterAngleG 359
SetComparisonDepth 356
SetDelimiterString 373
SetExtendedClassification 355
SetNegAngleA 360
SetNegAngleB 361
SetNegAngleG 362
SetPosAngleA 363
SetPosAngleB 363
SetPosAngleG 364
SetScale 357

CcConvolution methods
GetKernel 529
RestoreKernel 534
SaveKernel 534
SetKernel 527

CcConvolution methods,
DoConvolution/DoConvolutionRG
B/DoConvolutionHSL 531

CcConvolution object 526
CcCurve 140
CcDeviceManager 208
CcDigIODevice methods

ClearIntOnChangeConfig 466
EnableAsyncWrite 467
EnableCachedWrite 468
EnableIntOnChange 469
EnableLatchedRead 470
EnableWaitOnRead 472
ExecuteCachedWrite 473
ExecuteLatchedRead 474
GetDeviceCaps 475
1121

Index

1122
GetDeviceConfig 477
GetDeviceConfigFileDesc 478
GetDeviceConfigFileExt 480
GetDeviceProperty 481
GetErrorText 482
GetInputLineCount 483
GetOutputLineCount 484
GetReadTimeout 486
IsAsyncWriteDone 487
IsAsyncWriteEnabled 488
IsCachedWriteEnabled 489
IsIntOnChangeEnabled 489
IsLatchedReadEnabled 491
IsWaitOnReadEnabled 491
ReadInputLine 492
SetDeviceConfig 494
SetDeviceProperty 495
SetReadTimeout 496
ShowDeviceConfigDialog 497
WriteOutputLine 498

CcDigIODevice object 464
CcDMCode methods

GetAngle 443
GetCenter 444
GetCodeFileID 444
GetContrast 445
GetCorners 445, 447
GetErrorCount 448
GetExecTime 449
GetFNC1 449
GetMinModuleSize 450
GetModuleSize 450
GetProgress 451
GetSAInfo 452
GetSize 453
GetText 454
GetTextLen 454

GetTimeout 455
Initialize 455
IsSASetComplete 456
ReportError 456
SetAutoSize 439
SetContrast 439
SetMinModuleSize 441
SetSize 441
SetTimeout 442

CcDMReader methods
Read 458

CcDMReader object 436
CcEdgeFinder methods

FindEdges 512
SetInputRoi 504
SetMaskImage 505
SetMaxObjectSize 510
SetMinObjectSize 509
SetMultiEdgeOption 511
SetObjectColor 506
SetSearchRadius 507

CcEdgeFinder object 504
CcFileConv methods

LoadImage 517
SaveImage 519
SetSizeOptions 520

CcFileConv object 516
CcGraph 150
CcHistogram methods

GetStats 613
MakeHistogram 611
Normalize 612

CcHistogram object 610
CcHLObject 14
CcImage 26

Index
CcImgCL methods
AddImage 648
BuildCatalog 648
Classify 623
CountNumHypos 630
GetResult 624
GetRoiIn 625
InitializeTrainingProcedure 634
LoadCatalog 625
SaveCatalog 626
SetAngleEnd 647
SetAngleStart 645
SetAngleStep 646
SetBackgroundImage 636
SetExtendedClassificationDepth 629
SetHypothesisType 640
SetImageName 639
SetInputImage 637
SetInputImageHeight 636
SetInputImageWidth 635
SetInputMask 638
SetLightDesens 628
SetRoiIn 627
SetScoreCalculation 630
SetShiftInX 643
SetShiftInY 644
UseNormalizedMetric 649

CcImgCL object 620
CcImgMod methods

Crop 653
FlipRotate 656
Scale 658

CcImgMod object 652
CcLineProfile methods

AverageProfile 666
FindBestEdge 676
FindDNEdge 675

FindUPEdge 673
GainAndOffset 667
GetExactPoint 672
GetLineDistance 669
GetPixelLocationsAll 668
GetPixelLocationsCenter 668
GetStraightDistance 670
MakeProfile 664
TakeDerivative 666

CcLineProfile object 662
CcList 180
CcMorphology methods

CloseBinary 689
DilateBinary 692
ErodeBinary 691
GetKernel 685
OpenBinary 688
RestoreKernel 687
SaveKernel 688
SetKernel 684
SkeletonBinary 693
WatershedBinary 694
WaterShedDistance 695

CcMorphology object 682
CcPicture objects 700
CcPictureTool methods

AcquireImage 765
EnableTimeStamping 758
GetCompatibleImage 755
GetDeviceCaps 704
GetDeviceConfig 780
GetDeviceConfigFileDesc 789
GetDeviceConfigFileExt 787
GetDeviceProperty 713
GetErrorText 792
GetHorzImageScale 725
GetImageDims 736
1123

Index

1124
GetImageDimsLimits 742
GetImageHeight 741
GetImageScale 722
GetImageScaleLimits 733
GetImageType 747
GetImageTypeEx 751
GetImageTypeLimits 753
GetImageWidth 739
GetInputSource 717
GetInputSourceCount 715
GetScaledImageDims 729
GetScaledImageHeight 731
GetScaledImageWidth 730
GetTimeout 720
GetVertImageScale 727
IsDeviceCapSupported 708
IsLiveVideoRunning 776
IsStreamingInProgress 764
IsTimeStampingEnabled 759
LoadDeviceConfig 783
SaveDeviceConfig 784
SetDeviceConfig 777
SetDeviceProperty 712
SetHorzImageScale 724
SetImageAverage 757
SetImageDims 735
SetImageHeight 740
SetImageScale 721
SetImageType 744
SetImageTypeEx 749
SetImageWidth 738
SetInputSource 716
SetTimeout 718
SetVertImageScale 726
ShowDeviceConfigDialog 791
StartLiveVideo 774
StartStreaming 760

StopLiveVideo 775
StopStreaming 761
TimedAcquireToAVI 767
TimedAcquireToDisc 769
TimedAcquireToMemory 771
WaitForImage 763

CcROIBase 103
CcRoiGauge methods

AngleAtMiddlePoint 560
AngleBoundingRect 606
AngleFromXaxis 562
Area 563
AvgDistance 554
BlueAverage 584
BlueValue 593
DirectedDistance 567
Distance 565
GetMethodList 602
GetResults 600
GrayAverage 580
GrayValue 590
GreenAverage 583
GreenValue 592
Height 559
HeightBoundingRect 604
HueAverage 586
HueValue 594
IntersectionAngle 569
LineLength 568
LumValue 597
MaxDirectedDistance 572
MaxDistance 553
MaxOppositeDistance 574
MaxPerpendicularDistance 577
MinDirectedDistance 571
MinDistance 551
MinOppositeDistance 573

Index
MinPerpendicularDistance 576
Perimeter 564
RedAverage 582
RedValue 591
Roundness 579
SatAverage 587, 588
SatValue 595
SetAngle 550
SetImage1 547
SetImage2 548
SetImage3 549
SetRoi1 544
SetRoi2 545
SetRoi3 546
Width 558
WidthBoundingRect 605
XCoordinate 555
XIntersection 598
YCoordinate 556
YIntersection 599

CcRoiGauge object 540
CcSearch methods

GetFeatureImage 866
GetMaskImage 869
GetMatch 872
GetMaxMatch 869
GetMaxNumMatches 867
GetMinMatch 871
GetScoreThresh 876
GetSearchLevel 874
GetSearchTime 873
GetSearchType 874
GetSubpixelFlag 875
GetValidNumMatches 868
GuessMaskImage 877
LoadCatalog 863
SaveCatalog 862

Search 864
SetFeatureImage 848
SetInspectionImage 849
SetInspectionRoi 850
SetMaskImage 851
SetMaxNumMatches 853
SetNumPoints 854
SetScoreThresh 859
SetSearchLevel 855
SetSearchType 857
SetSubpixelFlag 861

CcSearch object 844
CcSerialIO methods

FreeComPort 882
GetAllComOptions 882
GetComPortNumber 884
GetNumberFormat 884
GetTimeOut 885
InitializeComPort 886
InitializeComPortEx 887
IsAsync 889
IsComPortAvailable 889
ReadComPort 890
Restore 892
Save 892
SetAllComOptions 893
SetComOptions 894
SetComPortNumber 895
SetNumberFormat 896
SetTimeOut 897
WriteComPort 898

CcSerialIO objects 880
CcShapeFitter methods

GetMethodList 841
GetResults 839
RoiToEllipseRoi 837
RoiToLineRoi 836
1125

Index

1126
RoiToPointRoi 838
SetInputImage 834
SetInputROI 834

CcShapeFitter object 832
CcTextRoiRect methods

AddLineOfText 916
ClearAllLinesOfText 915
CopyTextToImage 912
GetColors 922
GetDrawTo 919
GetLineOfText 916
GetNumberOfLinesOfText 917
GetPosition 914
RestoreOrigImageData 911
SelectFont 923
SetColors 920
SetDrawTo 918
SetPosition 913

CcTextRoiRect object 910
CcThreshold methods

InvertOutput 934
Threshold 927
ThresholdHSL 930
ThresholdMulti 932
ThresholdRGB 928

CcThreshold object 926
CcUnwrapper methods

GetOutputScaleFactor 816
GetReferenceAngle 810
GetUnwrapAngle 812
SetInputImage 817
SetInputRoi 819
SetOutputScaleFactor 815
SetReferenceAngle 809
SetUnwrapAngle 811
SetUnwrapDirection 813, 814
SizeOutputImage 821

Unwrap 824
CcWAV methods

CancelWAVPlay 903
GetSyncMode 903
PlayWAVFile 904, 905
SetSyncMode 905
SetWAVFile 906

CcWav object 902
Change 797
Change tool 795
ChangeOverlay 802
ChangeRGB 799
CHG_PATH 424
child image method 96

GetRegion 96
CHR 416
class

Calibration 196
Curve 137
Device Manager 206
Graph 147
Image 17
List 175
ROI 98

class hierarchy 19
Classify 623
ClassifyContours 383
CleanCatalog 374
CleanIUTList 374
ClearAllLinesOfText 915
ClearCalibrationObject 84
ClearIntOnChangeConfig 466
CLEARLOGBOX 432
ClearOverlay 29
CLOSE 422
Close 271
CloseBinary 689

Index
CLOSELOGBOX 431
color tables 37
command messages 1006

HLC_ACTIVATE_VIEWPORT 1050
HLC_ACTIVE_ROI 1034
HLC_ADD_CALIBRATION_

OBJECT_TO_LIST 1030
HLC_ADD_IMAGE_OBJECT_TO_

LIST 1016
HLC_ADD_LIST_TO_MAIN 1051
HLC_ADD_TO_SCRIPT_TOOLS

1052
HLC_ARRANGE_VIEWPORTS 1048
HLC_CLEAR_IMAGE_OBJECT 1020
HLC_CLOSE_VIEWPORT 1049
HLC_DEL_CALIBRATION_OBJECT

_FR_LIST 1031
HLC_DEL_IMAGE_OBJECT_FR_

LIST 1018
HLC_FILE_OPEN 1011
HLC_FILE_SAVE 1012
HLC_MANAGE_MAINAPP 1044
HLC_MANAGE_VIEWPORT 1043
HLC_POSITION_MAINAPP 1047
HLC_POSITION_VIEWPORT 1046
HLC_REDRAW_IMAGE_

OVERLAY 1022
HLC_REDRAW_VIEW 1023
HLC_ROI_ADD 1038
HLC_ROI_DELETE 1040
HLC_ROI_DELETE_ALL 1035
HLC_SEND_LIST_CHANGE_

NOTIFICATION 1052
HLC_SEND_NAME_CHANGE_

NOTIFICATION 1042
HLC_SET_DEFAULT_

CALIBRATION_OBJECT 1032

HLC_SET_IMAGE_OBJECT 1019
HLC_SET_LOGICAL_PALETTE_TO

1024
HLC_SET_ROI_MODE_TO 1037
HLC_SET_ROI_TYPE_TO 1036
HLC_SHOW_PIXEL_GROUPING

1027
HLC_SIZE_IMAGE_TO_ACTUAL

1014
HLC_SIZE_IMAGE_TO_WINDOW

1013
HLC_SIZE_WINDOW_TO_IMAGE

1015
using 1077

constants 28
constructor and destructor methods

102, 140, 150, 197, 208
~CcCalibration 197
~CcCurve 140
~CcDeviceManager 208
~CcGraph 150
~CcImage 26
~CcList 180
~CcROIBase 103
CcCalibration 197
CcCurve 140
CcDeviceManager 208
CcGraph 150
CcImage 26
CcList 180
CcROIBase 103

conversion methods 199
ConvertPoint 199
GetAreaOfPixel 201

ConvertImagePointToWorldCoords
80

ConvertPoint 199
1127

Index

1128
ConvertPointToImageCoords 78
Copy/CopyRGB/CopyHSL 259
CopyTextToImage 912
CopyToClipboard 55
COS 411
CountNumHypos 630
Create 270
CreateOverlay 29
creating a base tool 1071
creating DT Vision Foundry tools 937
Crop 653
Curve class 137
curve list method 151
curve list method, SetCurveList 151
Curve objects 137
Custom Script tool 387
customizing the look of your tool 1075

D
data access methods 144

GetCurveData 144
GetNumberOfPoints 146
SetCurveData 145

data logging functions
CLEARLOGBOX 432
CLOSELOGBOX 431
OPENLOGBOX 429
WRITELOGBOX 432

data types 390
DATE 420
date and time 406
date and time functions

DATE 420
DATE$ 420
TIME 421

DATE$ 420

DELAY 429
delete methods 187

DeleteAtIndex 189
DeleteHead 188
DeleteSelected 190
DeleteTail 188
DeleteViaName 190

DeleteAtIndex 189
DeleteChildrenOnDestruction 337
DeleteHead 188
DeleteSelected 190
DeleteTail 188
DeleteViaName 190
deriving algorithms 1086
Device Manager

information methods 210
initialize method 208
load methods 218
save methods 218
uninitialize method 208

Device Manager class 206
Device Manager methods

GetDeviceNames 212
GetDeviceObject 214
GetErrorText 217
GetPluginNames 211
Initialize 208
LoadDeviceManagerState 219
SaveDeviceManagerState 218
Uninitialize 210

Device Manager objects 206
dialog box 1076
dialog box methods 172

ShowDLBLineStyle 173
ShowDLBSetGridMarkings 173
ShowDLBSetMM 174
ShowDLBTitle 174

Index
Digital I/O tool 463
DilateBinary 692
direct point access methods 167

GetSelBPDirect 168
SetSelBPDirect 167

DirectedDistance 567
Distance 565
Div/DivRGB/DivHSL 240
DoCalibration 198
DoConvert 94
DoConvolution/DoConvolutionRGB/

DoConvolutionHSL 531
DoMouseDrag 117

E
Edge Finder tool 501
editing the bitmap and icons 1076
editing the dialog box 1076
editing the string table 1075
e-mail support 9
EnableAsyncWrite 467
EnableCachedWrite 468
EnableIntOnChange 469
EnableLatchedRead 470
EnableTimeStamping 758
EnableWaitOnRead 472
END 428
EndThresholding 44
EOF 425
ERASE 424
ErodeBinary 691
example program

Barcode tool 304
Blob Analysis tool 344
File Manager tool 522
Filter tool 536

Histogram tool 615
Line Profile tool 678
Morphology tool 697
Pixel Change tool 805
Polar Unwrap tool 460, 828
Serial I/O tool 900
Threshold tool 935
WAV Player tool 908

ExecuteCachedWrite 473
ExecuteLatchedRead 474
executing algorithms 1087
EXIST 423
EXIT 428
expressions 400
EZ image data access methods 56

operator(x,y) 58
operator= 58
SetOperatorOverloadAccess 57

F
fast image data access methods 60

GetBitmapImageData 60
GetHeightWidth 62
GetImageType 63
ReScaleImageOnShow 64
SizeOf 65

fax support 9
File Conversion tool 515
file functions

CHG_PATH 424
CLOSE 422
EOF 425
ERASE 424
EXIST 423
OPEN 421
1129

Index

1130
READ 422
WRITE 423

Filter tool 525
FindBestEdge 676
FindChildren 323
FindDNEdge 675
FindEdges 512
FindUPEdge 673
FlipRotate 656
FreeComPort 882
FreeOverlay 35

G
GainAndOffset 667
Gauge tool 539
general methods 191, 203

GetCurrentObjectsIndex 192
GetNumberOfObjects 191
GetSelectedObjectsIndex 192
GetSizeOfImage 205
GetUnitsOfMeasure 204
SelectObjectsAtIndex 191
SetDestructionType 193
SetUnitsOfMeasure 203

Get3Drotation 365
GetAccess

HSL method 90
RGB method 86

GetAllComOptions 882
GetAngle 443
GetAngleDelimiting 366
GetAreaOfPixel 201
GetAtIndex 182
GetAutothreshold 303
GetAutoUpdateDisplay 68
GetBCOptions 287

GetBitmapImageData 60
GetBitmapImageDataHSL 93
GetBlobList 325
GetBlobStats 332
GetBlobStatsFlags 322, 341
GetBoundingRect 130, 327
GetCalibrationObject 83
GetCatalogCount 375
GetCatalogString 380
GetCenter 444
GetCenterAngleA 368
GetCenterAngleB 369
GetCenterAngleG 369
GetChildBlobList 334
GetCodeFileID 444
GetColors 922
GetComparisonDepth 367
GetCompatibleImage 279, 755
GetComPortNumber 884
GetContrast 445
GetCorners 445, 447
GetCurrentBoundingRect 122
GetCurrentObjectsIndex 192
GetCurveData 144
GetCurveStyle 143
GetDeviceCaps 475, 704
GetDeviceConfig 477, 780
GetDeviceConfigFileDesc 478, 789
GetDeviceConfigFileExt 480, 787
GetDeviceNames 212
GetDeviceObject 214
GetDeviceProperty 481, 713
GetDisplayLUT 69
GetDrawTo 919
GetError 377
GetErrorCount 448
GetErrorText 217, 482, 792

Index
GetExactPoint 672
GetExecTime 449
GetExtendedClassification 366
GetFeatureImage 866
GetFNC1 449
GetFrameCount 276
GetFrameDimensions 277
GetFrameType 278
GetFreehandROI 333
GetGraphText 154
GetGridMarkings 171
GetHead 181
GetHeightWidth 62
GetHorzImageScale 725
GetImageDims 736
GetImageDimsLimits 742
GetImageHeight 741
GetImageScale 722
GetImageScaleLimits 733
GetImageType 63, 747
GetImageTypeEx 751
GetImageTypeLimits 753
GetImageWidth 739
GetInputLineCount 483
GetInputSource 717
GetInputSourceCount 715
GetInstance 76
GetIUTCount 376
GetKernel 529, 685
GetLineDistance 669
GetLineOfText 916
GetListROI 81
GetLPOptions 289
GetMaskImage 869
GetMatch 872
GetMaxBlobHeight 316
GetMaxBlobSize 314

GetMaxBlobWidth 318
GetMaxMatch 869
GetMaxNumMatches 867
GetMaxPixelValue 45
GetMethodList 602, 841
GetMinBlobHeight 315
GetMinBlobSize 312
GetMinBlobWidth 317
GetMinMatch 871
GetMinMaxValues 159
GetMinModuleSize 450
GetMinPixelValue 44
GetModuleSize 450
GetName 15
GetNegAngleA 370
GetNegAngleB 370
GetNegAngleG 371
GetNext 181
GetNumberFormat 884
GetNumberOfLinesOfText 917
GetNumberOfObjects 191
GetNumberOfPoints 146
GetOutputLineCount 484
GetOutputScaleFactor 816
GetOverlay 30
GetParent 327
GetPerimeterChainCode 328
GetPerimeterPG 328
GetPixelLocationsAll 668
GetPixelLocationsCenter 668
GetPluginNames 211
GetPosAngleA 372
GetPosAngleB 372
GetPosAngleG 373
GetPosition 914
GetPositionViaMouse 165
GetPrev 182
1131

Index

1132
GetProgress 451
GetReadTimeout 486
GetReferenceAngle 810
GetRegion 96
GetRemoveBoundaryBlobFlag 343
GetResult 383, 624
GetResults 600, 839
GetResultsCount 375
GetRoiImageCord 111
GetRoiIn 625
GetROIType 104
GetSAInfo 452
GetScaledImageDims 729
GetScaledImageHeight 731
GetScaledImageWidth 730
GetScaleMax 368
GetScaleMin 367
GetScoreThresh 876
GetSearchLevel 874
GetSearchTime 873
GetSearchType 874
GetSelBPDirect 168
GetSelected 184
GetSelectedColor 107
GetSelectedObjectsIndex 192
GetSize 453
GetSizeOfImage 205
GetStats 613
GetStraightDistance 670
GetSubpixelFlag 875
GetSyncMode 903
GetTail 182
GetText 454
GetTextLen 454
GetTimeOut 885
GetTimeout 455, 720
GetType 16

GetUnitsOfMeasure 204
GetUnSelectedColor 108
GetUnwrapAngle 812
GetValidNumMatches 868
GetVertImageScale 727
GetXBoundary 131
GetYBoundary 130
GOSUB 427
GOTO 428
Graph class 147
Graph objects 147
graphic ROI methods 133

IsRoiAGraphicObject 134
UpdateImageIfNeeded 134

GrayAverage 580
GrayValue 590
GreenAverage 583
GreenValue 592
grid marking methods 169

GetGridMarkings 171
SetGridMarkings 169

GrowBlobs 324
GuessMaskImage 877
guidelines, implementation 939

H
Height 559
HeightBoundingRect 604
hierarchy, class 19
Histogram tool 609
HLC_ACTIVATE_VIEWPORT 1050
HLC_ACTIVE_ROI 1034
HLC_ADD_CALIBRATION_OBJECT

_TO_LIST 1030
HLC_ADD_IMAGE_OBJECT_TO_

LIST 1016

Index
HLC_ADD_LIST_TO_MAIN 1051
HLC_ADD_TO_SCRIPT_TOOLS 1052
HLC_ARRANGE_VIEWPORTS 1048
HLC_CLEAR_IMAGE_OBJECT 1020
HLC_CLOSE_VIEWPORT 1049
HLC_DEL_CALIBRATION_OBJECT_

FR_LIST 1031
HLC_DEL_IMAGE_OBJECT_FR_LIST

1018
HLC_FILE_OPEN 1011
HLC_FILE_SAVE 1012
HLC_MANAGE_MAINAPP 1044
HLC_MANAGE_VIEWPORT 1043
HLC_POSITION_MAINAPP 1047
HLC_POSITION_VIEWPORT 1046
HLC_REDRAW_IMAGE_OVERLAY

1022
HLC_REDRAW_VIEW 1023
HLC_ROI_ADD 1038
HLC_ROI_DELETE 1040
HLC_ROI_DELETE_ALL 1035
HLC_SEND_LIST_CHANGE_

NOTIFICATION 1052
HLC_SEND_NAME_CHANGE_

NOTIFICATION 1042
HLC_SET_DEFAULT_

CALIBRATION_OBJECT 1032
HLC_SET_IMAGE_OBJECT 1019
HLC_SET_LOGICAL_PALETTE_TO

1024
HLC_SET_ROI_MODE_TO 1037
HLC_SET_ROI_TYPE_TO 1036
HLC_SHOW_PIXEL_GROUPING

1027
HLC_SIZE_IMAGE_TO_ACTUAL

1014

HLC_SIZE_IMAGE_TO_WINDOW
1013

HLC_SIZE_WINDOW_TO_IMAGE
1015

HLN_DEFAULT_CALIBRATION_
OBJECT_CHANGED 1003

HLN_DELETED_CALIBRATION_
OBJECT 1001

HLN_DELETED_IMAGE_OBJECT
969

HLN_DELETED_ROI_OBJECT 975
HLN_DELETING_CALIBRATION_

OBJECT 1002
HLN_DELETING_IMAGE_OBJECT

971
HLN_DELETING_ROI_OBJECT 976
HLN_LBUTTONDLBCLK 992
HLN_LBUTTONDOWN 984
HLN_LBUTTONUP 986
HLN_LIST_CHANGED 1005
HLN_MOUSEMOVE 981
HLN_NEW_CALIBRATION_OBJECT

1000
HLN_NEW_IMAGE_OBJECT 968
HLN_OBJECT_NAME_CHANGED

999
HLN_RBUTTONDBLCLK 994
HLN_RBUTTONDOWN 988
HLN_RBUTTONUP 990
HLN_ROI_ACTIVATED 977
HLN_ROI_COPIED 978
HLN_ROI_CREATED 974
HLN_ROI_MOVED 979
HLN_ROI_RESIZED 980
HLN_ROI_TYPE_CHANGE 973
HLN_SCRIPT_RUNNING 1004
HLN_VIEWPORT_ACTIVATED 997
1133

Index

1134
HLN_VIEWPORT_DEACTIVATED
998

HLN_VIEWPORTS_IMAGE_
CHANGED 996

HLR_SUPPLY_ACTIVE_ROI_
OBJECT 947

HLR_SUPPLY_CALIBRATION_
OBJECT_LIST 957

HLR_SUPPLY_DEFAULT_
CALIBRATION_OBJECT 958

HLR_SUPPLY_IMAGE_OBJECT 944
HLR_SUPPLY_IMAGE_OBJECT_LIST

945
HLR_SUPPLY_LIST_BY_NAME 961
HLR_SUPPLY_NEW_VIEWPORT 956
HLR_SUPPLY_ROI_OBJECT_LIST

948
HLR_SUPPLY_ROI_TYPE 951
HLR_SUPPLY_VIEWPORT_ARRAY

959
HLR_SUPPLY_VIEWPORT_VIA_

IMAGE 954
HLR_SUPPLY_VIEWPORT_VIA_

INSTANCE 953
HLR_SUPPLY_VIEWPORTS_

INSTANCE 952
HLS_BRANCH_TO_CHILDREN_

DONE 1070
HLS_CAN_BRANCH_TO_

CHILDREN 1069
HLS_CAN_TOOL_BE_PARENT 1068
HLS_CANCEL_EDIT 1061
HLS_CREATING_SCRIPT_STRUCT

1066
HLS_DELETING_SCRIPT_STRUCT

1067
HLS_EDIT_SCRIPT 1059

HLS_INITIALIZE_FOR_RUN 1058
HLS_RUN_SCRIPT 1056
HLS_STEP_SCRIPT 1057
HLS_SUPPLY_SCRIPT_STRUCT_

DEFAULTS 1064
HLS_SUPPLY_SCRIPT_STRUCT_

SIZE 1062
HLS_UNINITIALIZE_FOR_RUN 1060
HueAverage 586
HueValue 594

I
icons 1076
IF THEN ELSE 425
image allocation methods 46

MakeBlankBMP 46
OpenBMPFIle 48
SaveBMPFile 48

Image class 17
Image Classifier tool 619
image display methods 49

CopyToClipboard 55
Print 53
Show 50

Image Modifier tool 651
Image object 17
IN 416
Initialize 208, 455
InitializeComPort 886
InitializeComPortEx 887
InitializeTrainingProcedure 634
insert methods 184

InsertAtIndex 186
InsertHead 184
InsertSelected 186
InsertTail 185

Index
InsertAtIndex 186
InsertHead 184
InsertSelected 186
InsertTail 185
installation 5
instance methods 75

GetInstance 76
SetInstance 76

INSTR 417
IntersectionAngle 569
InvertOutput 934
IsAsync 889
IsAsyncWriteDone 487
IsAsyncWriteEnabled 488
IsCachedWriteEnabled 489
IsComPortAvailable 889
IsCursorOnBP 161
IsCursorOnSelectedBP 163
IsDeviceCapSupported 708
IsIntOnChangeEnabled 489
IsLatchedReadEnabled 491
IsLiveVideoRunning 776
IsOpenForReading 272
IsOpenForWriting 274
IsRoiAGraphicObject 134
IsROISelected 106
IsSASetComplete 456
IsStreamingInProgress 764
IsTimeStampingEnabled 759
IsWaitOnReadEnabled 491

K
keywords 408
KURTOSIS 413

L
Line Profile tool 661
LineLength 568
List class 175
list method 81
list method, GetListROI 81
List objects 175
LoadCatalog 382, 625, 863
LoadDeviceConfig 783
LoadDeviceManagerState 219
LoadImage 517
logical operators 395
LogicalAnd 245
LogicalOr 250
LogicalXOR 255
looping 404
LumValue 597

M
MakeBlankBMP 46
MakeHistogram 611
MakeImageOfCATList 384
MakeImageOfIUTList 385
MakeProfile 664
MatchRecord 845
math functions

ABS 410
CHR 416
COS 411
IN 416
INSTR 417
KURTOSIS 413
MEAN 412
MEDIAN 412
MESSAGEBOX 419
PI 415
1135

Index

1136
SETDP 418
SIGMA 414
SIN 411
SKEW 414
SQRT 416
STD_DEV 415
TAN 411
TEXTLN 418
UPCASE 419

math operators 393
MaxDirectedDistance 572
MaxDistance 553
MaxOppositeDistance 574
MaxPerpendicularDistance 577
MEAN 412
MEDIAN 412
MESSAGEBOX 419
messages 940

command 1006
notification 963
point and click script 1053
request 941

MinDirectedDistance 571
MinDistance 551
MinOppositeDistance 573
MinPerpendicularDistance 576
Morphology tool 681
mouse methods 112, 161

DoMouseDrag 117
GetCurrentBoundingRect 122
GetPositionViaMouse 165
IsCursorOnBP 161
IsCursorOnSelectedBP 163
MouseHitTest 122
SetSelBPViaMouse 166
StartMouseDrag 114
StopMouseDrag 120

MouseHitTest 122
Mul/MulRGB/MulHSL 235

N
name methods

GetName 15
SetName 15

NameCatalogElements 379
Normalize 612
notification messages 963

HLN__DELETED_ROI_OBJECT 975
HLN_DEFAULT_CALIBRATION_

OBJECT_CHANGED 1003
HLN_DELETED_CALIBRATION_

OBJECT 1001
HLN_DELETED_IMAGE_OBJECT

969
HLN_DELETING_CALIBRATION_

OBJECT 1002
HLN_DELETING_IMAGE_OBJECT

971
HLN_DELETING_ROI_OBJECT 976
HLN_LBUTTONDBLCLK 992
HLN_LBUTTONDOWN 984
HLN_LBUTTONUP 986
HLN_LIST_CHANGED 1005
HLN_MOUSEMOVE 981
HLN_NEW_CALIBRATION_

OBJECT 1000
HLN_NEW_IMAGE_OBJECT 968
HLN_OBJECT_NAME_CHANGED

999
HLN_RBUTTONDBLCLK 994
HLN_RBUTTONDOWN 988
HLN_RBUTTONUP 990
HLN_ROI_ACTIVATED 977

Index
HLN_ROI_COPIED 978
HLN_ROI_CREATED 974
HLN_ROI_MOVED 979
HLN_ROI_RESIZED 980
HLN_ROI_TYPE_CHANGE 973
HLN_SCRIPT_RUNNING 1004
HLN_VIEWPORT_ACTIVATED 997
HLN_VIEWPORT_DEACTIVATED

998
HLN_VIEWPORTS_IMAGE_

CHANGED 996
using 1081

nPropId 1091
nValue 1091

O
objects

Base Class 14
Calibration 196
CcBarCode 286
CcBlob 308
CcBlobFinder 308
CcChange 796
CcConvolution 526
CcDigIODevice 464
CcEdgeFinder 504
CcFileConv 516
CcHistogram 610
CcImgCL 620
CcImgMod 652
CcLineProfile 662
CcRoiGauge 540
CcSearch 844
CcSerialIO 880
CcShapeFitter 832
CcTextRoiRect 910

CcThreshold 926
CcWav 902
Curve 137
Device Manager 206
Graph 147
Image 17
List 175
Picture tool 700
Polar Unwrap 808
ROI 98

OPEN 421
Open 202, 269
OpenBinary 688
OpenBMPFile 48
OPENLOGBOX 429
operator(x,y) 58
operators 392

logical 395
math 393
string 397

output look-up table methods 66
GetAutoUpdateDisplay 68
GetDisplayLUT 69
SetAutoUpdateDisplay 69
SetDisplayLUT 73

overlay methods 27
ClearOverlay 29
CreateOverlay 29
FreeOverlay 35
GetOverlay 30
ShowOverlay 32

P
Perimeter 564
PI 415
Picture tool 699
1137

Index

1138
PlayWAVFile 904, 905
point and click script messages 1053

HLS_BRANCH_TO_CHILDREN_
DONE 1070

HLS_CAN_BRANCH_TO_
CHILDREN 1069

HLS_CAN_TOOL_BE_PARENT
1068

HLS_CANCEL_EDIT 1061
HLS_CREATING_SCRIPT_STRUCT

1066
HLS_DELETING_SCRIPT_STRUCT

1067
HLS_EDIT_SCRIPT 1059
HLS_INITIALIZE_FOR_RUN 1058
HLS_RUN_SCRIPT 1056
HLS_STEP_SCRIPT 1057
HLS_SUPPLY_SCRIPT_STRUCT_

DEFAULTS 1064
HLS_SUPPLY_SCRIPT_STRUCT_

SIZE 1062
HLS_UNINITIALIZE_FOR_RUN

1060
point conversion methods 77

ConvertImagePointToWorldCoords
80

ConvertPointToImageCoords 78
Polar Unwrap tool 808
position methods 108

GetRoiImageCord 111
SetRoiImageCord 109

predefined constants 28
Print 53
program flow control functions

DELAY 429
END 428
EXIT 428

GOSUB 427
GOTO 428
IF THEN ELSE 425
REPEAT UNTIL 427
RETURN 429
WHILE WEND 426

programming considerations 400

R
RC file

bitmaps and icons 1076
dialog box 1076
string table 1075

READ 422
Read 458
ReadBarcode 292
ReadComPort 890
ReadFrame 280
ReadInputLine 492
ReadTable 293
RebuildCatalog 379
RedAverage 582
RedValue 591
registering a tool 1073
REPEAT UNTIL 427
ReportError 456
request messages 941

HLR_IS_SCRIPT_RUNNING
HLR_IS_SCRIPT_RUNNING 962

HLR_SUPPLY_ACTKVE_ROI_
OBJECT 947

HLR_SUPPLY_CALIBRATION_
OBJECT_LIST 957

HLR_SUPPLY_DEFAULT_CALIBR
ATION_OBJECT 958

HLR_SUPPLY_IMAGE_OBJECT 944

Index
HLR_SUPPLY_IMAGE_OBJECT_
LIST 945

HLR_SUPPLY_LIST_BY_NAME 961
HLR_SUPPLY_NEW_VIEWPORT

956
HLR_SUPPLY_ROI_OBJECT_LIST

948
HLR_SUPPLY_ROI_TYPE 951
HLR_SUPPLY_VIEWPORT_ARRAY

959
HLR_SUPPLY_VIEWPORT_VIA_

IMAGE 954
HLR_SUPPLY_VIEWPORT_VIA_

INSTANCE 953
HLR_SUPPLY_VIEWPORTS_

INSTANCE 952
request messages, using 1077
ReScaleImageOnShow 64
Restore 133, 892
RestoreAppearance 153
RestoreKernel 534, 687
RestoreOptions 295
RestoreOrigImageData 911
restrictions 407
retrieve methods 181

GetAtIndex 182
GetHead 181
GetNext 181
GetPrev 182
GetSelected 184
GetTail 182

RETURN 429
ROI

copying 114
creation 113
deletion 114

moving 114
selection 114

ROI class 98
ROI display method, ShowROI 125
ROI image access methods 128

GetBoundingRect 130
GetXBoundary 131
GetYBoundary 130

ROI objects 98
ROI Shape Fitter tool 807, 831
RoiToEllipseRoi 837
RoiToLineRoi 836
RoiToPointRoi 838
Roundess 579

S
SatAverage 587, 588
SatValue 595
Save 132, 202, 892
save and restore methods 132, 152, 202

Open 202
Restore 133
RestoreAppearance 153
Save 132, 202
SaveAppearance 152

SaveAppearance 152
SaveBMPFile 48
SaveCatalog 381, 626, 862
SaveDeviceConfig 784
SaveDeviceManagerState 218
SaveImage 519
SaveKernel 534, 688
SaveOptions 296
Search 864
Search tool 843
SearchTypeEnum 845
1139

Index

1140
SelectFont 923
selection methods 105

GetSelectedColor 107
GetUnSelectedColor 108
IsROISelected 106
SetSelected 105
SetSelectedColor 106
SetUnSelectedColor 107

SelectObjectsAtIndex 191
separating tools into modules 1084
Serial I/O tool 879
service and support procedure 6
Set3Drotation 352
SetAccess

HSL method 90
RGB method 85

SetAllComOptions 893
SetAngle 550
SetAngleDelimiting 355
SetAngleEnd 647
SetAngleStart 645
SetAngleStep 646
SetAutoSize 439
SetAutothreshold 302
SetAutoUpdateDisplay 69
SetBackgroundImage 636
SetBCOptions 297
SetBlobStatsFlags 318, 338
SetCalibrationObject 82
SetCenterAngleA 358
SetCenterAngleB 359
SetCenterAngleG 359
SetClipping 95
SetColorImageType 268
SetColors 920
SetComOptions 894
SetComparisonDepth 356

SetComPortNumber 895
SetContrast 439
SetCurveData 145
SetCurveStyle 141
SetDelimiterString 373
SetDestructionType 193
SetDeviceConfig 494, 777
SetDeviceProperty 495, 712
SetDisplayLUT 73
SETDP 418
SetDrawTo 918
SetExtendedClassification 355
SetExtendedClassificationDepth 629
SetFeatureImage 848
SetGraphText 153
SetGridMarkings 169
SetHorzImageScale 724
SetHypothesisType 640
SetImage1 547
SetImage2 548
SetImage3 549
SetImageAverage 757
SetImageDims 735
SetImageHeight 740
SetImageName 639
SetImageScale 721
SetImageType 744
SetImageTypeEx 749
SetImageWidth 738
SetInputImage 637, 817, 834
SetInputImageHeight 636
SetInputImageWidth 635
SetInputMask 638
SetInputROI 834
SetInputRoi 504, 819
SetInputSource 716
SetInspectionImage 849

Index
SetInspectionRoi 850
SetInstance 76
SetKernel 527, 684
SetLightDesens 628
SetLPOptions 300
SetMaskImage 505, 851
SetMaxBlobHeight 315
SetMaxBlobSize 313
SetMaxBlobWidth 317
SetMaxNumMatches 853
SetMaxObjectSize 510
SetMinBlobHeight 314
SetMinBlobSize 312
SetMinBlobWidth 316
SetMinMaxValues 158
SetMinModuleSize 441
SetMinObjectSize 509
SetMultiEdgeOption 511
SetName 15
SetNegAngleA 360
SetNegAngleB 361
SetNegAngleG 362
SetNumberFormat 896
SetNumPoints 854
SetObjectColor 506
SetOperatorOverloadAccess 57
SetOutputScaleFactor 815
SetPosAngleA 363
SetPosAngleB 363
SetPosAngleG 364
SetPosition 913
SetReadTimeout 496
SetReferenceAngle 809
SetRemoveBoundaryBlobFlag 342
SetRoi1 544
SetRoi2 545
SetRoi3 546

SetRoiImageCord 109
SetRoiIn 627
SetScale 357
SetScoreCalculation 630
SetScoreThresh 859
SetSearchLevel 855
SetSearchRadius 507
SetSearchType 857
SetSelBPDirect 167
SetSelBPViaMouse 166
SetSelected 105
SetSelectedColor 106
SetShiftInX 643
SetShiftInY 644
SetSize 441
SetSizeOptions 520
SetSubpixelFlag 861
SetSyncMode 905
SetTimeOut 897
SetTimeout 442, 718
SetUnitsOfMeasure 203
SetUnSelectedColor 107
SetUnwrapAngle 811
SetUnwrapDirection 813, 814
SetVertImageScale 726
SetWAVFile 906
Show 50
show/print method, ShowGraph 155
ShowDeviceConfigDialog 497, 791
ShowDLBLineStyle 173
ShowDLBSetGridMarkings 173
ShowDLBSetMM 174
ShowDLBTitle 174
ShowOverlay 32
SIGMA 414
SIN 411
SizeOf 65
1141

Index

1142
SizeOutputImage 821
SkeletonBinary 693
SKEW 414
speeding up execution 1086
SQRT 416
stack information 310
StartLiveVideo 774
StartMouseDrag 114
StartStreaming 760
STD_DEV 415
StopLiveVideo 775
StopMouseDrag 120
StopStreaming 761
string operators 397
string table 1075
style methods 141

GetCurveStyle 143
SetCurveStyle 141

Sub/SubRGB/SubHSL 230
support

e-mail 9
fax 9
telephone 6
World Wide Web 9

T
TakeDerivative 666
TAN 411
technical support 6

e-mail 9
fax 9
telephone 6
World-Wide Web 9

telephone support 6

text methods 153
GetGraphText 154
SetGraphText 153

Text tool 909
TEXTLN 418
Threshold 927
Threshold tool 925
ThresholdHSL 930
ThresholdImage 40
ThresholdImageHSL 91
ThresholdImageMulti 42
ThresholdImageRGB 87
thresholding methods 36

BeginThresholding 39
EndThresholding 44
GetMaxPixelValue 45
GetMinPixelValue 44
ThresholdImage 40
ThresholdImageMulti 42

ThresholdMulti 932
ThresholdRGB 928
TIME 421
TIME$ 421
TimedAcquireToAVI 767
TimedAcquireToDisc 769
TimedAcquireToMemory 771
tools

communication with the main
application 938

creating a base 1071
customizing the look 1075
definition 938
example implementation 1071
implementation guidelines 939
registering with DT Vision Foundry

1073

Index
separating into modules 1084
speeding up execution 1086

trigonometric functions 406
type methods

GetROITYpe 104
GetType 16

U
Uninitialize 210
Unwrap 824
UPCASE 419
UpdateImageIfNeeded 134
UpdateRGB 95
UseNormalizedMetric 649
using command and request messages

1077
using notification messages 1081

V
vendor-specific properties 1091

W
WaitForImage 763
WatershedBinary 694
WaterShedDistance 695
WHILE WEND 426
Width 558
WidthBoundingRect 605
World-Wide Web 9
WRITE 423
WriteComPort 898
WriteFrame 282
WRITELOGBOX 432
WriteOutputLine 498

X
XCoordinate 555
XIntersection 598

Y
YCoordinate 556
YIntersection 599
1143

Index

1144

Data Translation Support Policy
Data Translation, Inc. (Data Translation) offers
support upon the following terms and conditions at
prices published by Data Translation from time to
time. Current price information is available from
Data Translation, or its authorized distributor. If
Licensee elects to obtain support services from Data
Translation, Licensee must complete the Support
Order Form attached hereto and submit to Data
Translation the completed form, along with
Licensee's purchase order for support. Support will
only be provided for all (not less than all) Licensed
Processors (as defined in the Data Translation
Software License Agreement).

1. DEFINITIONS.

Capitalized terms used herein and not otherwise
defined shall have the meanings assigned thereto in
the applicable Data Translation Software License
Agreement (the Agreement). The following terms
have the meanings set forth below:
Enhanced Release means a new release of any
Product that contains new features and may contain
corrections to previously identified errors. Enhanced
Releases are designated in the tenths digit of the
release designation (e.g., 1.2 is an Enhanced Release
from 1.1.x).

Maintenance Release means a new release of any
Product that contains corrections to previously
identified errors. Maintenance Releases are
designated in the hundredths digit of the release
designation (e.g., 1.2.2 is a Maintenance Release
from 1.2.1).

Major Release means a new version of any Product
that involves major feature changes. Major Releases
are designated in the ones digit of the release
designation (e.g., 2.0, 3.0, etc., are Major Releases).

2. DATA TRANSLATION'S OBLIGATIONS.

Subject to the terms of the Agreement, and this
Support Policy, Data Translation will provide the
following support services (Support Services) for the
Products comprising the Software, as they may be
used with the Licensed Processors:

 (a) problem reporting, tracing and monitoring by
internet electronic mail; (b) telephone support for
problem determination, verification and resolution
(or instruction as to work-around, as applicable) on a
call-back basis during Data Translation's normal
weekday business hours of 8:30 a.m. to 5 p.m.
Eastern Time, excluding holidays; (c) one (1) copy of
each Maintenance Release for the Products
comprising the Software; (d) commercially
reasonable efforts to diagnose and resolve defects and
errors in the Software and Documentation; and (e)
furnishing of the maintenance and technical support
described above, for the current release and the
immediately previous Enhanced Release of the
Software. Support Services will be delivered in
English. Enhanced Releases and Major Releases can
be purchased by Licensee at a discount of twenty five
percent (25%) off the then-current list prices for such
releases.

3. EXCLUSIONS.

Support Services do not include: (a) the provision of
or support for Products other than those identified in
the Agreement as to which the applicable license and
support fees shall have been paid, including without
limitation, compilers, debuggers, linkers or other
third party software or hardware tools or components
used in conjunction with any Product; (b) services
required as a result of neglect, misuse, accident,
relocation or improper operation of any Product or
component thereof, or the failure to maintain proper
operating and environmental conditions; (c) support
for processors other than Licensed Processors or for
Products modified by or on behalf of Licensee; (d)
repair or restoration of any Software arising from or
caused by any casualty, act of God, riot, war, failure
or interruption of any electrical power, air

Data Translation Support Policy
conditioning, telephone or communication line or any
other like cause.

It is Licensee's responsibility to have adequate
knowledge and proficiency with the use of the
compilers and various software languages and
operating systems used with the Products, and this
Support Policy does not cover training of, or detailed
direction on the correct use of these compilers,
operating systems, or components thereof. On-site
assistance shall not be provided hereunder, but may
be available on a per call basis at Data Translation's
then current rates (Specialized Application Support
Charges) for labor, travel time, transportation,
subsistence and materials during normal business
hours, excluding holidays observed by Data
Translation. The troubleshooting of faulty Licensee
programming logic may also be subject to
Specialized Application Support Charges and is not
covered under this Support Policy. Direct authoring
or development of customized application code is not
provided hereunder but may be available on a per call
basis upon payment of Specialized Application
Support Charges.

4. LICENSEE'S OBLIGATIONS.

Licensee agrees: (a) that the Designated Contact
persons identified on the Support Order Form (or
such other replacement individuals as Licensee may
designate in writing to Data Translation) shall be the
sole contacts for the coordination and receipt of the
Support Services set forth in Section 2 of this Support
Policy; (b) to maintain for the term of the support, an
internet address for electronic mail communications
with Data Translation; (c) to provide reasonable
supporting data (including written descriptions of
problems, as requested by Data Translation) and to
aid in the identification of reported problems; (d) to
install and treat all software releases delivered under
this Support Policy as Software in accordance with
the terms of the Agreement; and (e) to maintain the
Agreement in force and effect.

5. TERM AND TERMINATION.

5.1 Term. For each Product comprising the
Software, Support Services will begin on the later of
the date the Software warranty granted in the
Agreement expires or the date of Licensee's election
to obtain Support Services and will apply to such
Product for an initial term of one (1) year, unless an
alternative commencement date is identified in the
Support Order Form. The initial term will
automatically be extended for additional terms of one
(1) year unless Support Services are terminated at the
expiration of the initial term or any additional term,
by either party upon thirty (30) days prior written
notice to the other party.

5.2 Default. If Licensee is in default of its
obligations under the Agreement (except for
Licensee's obligation to maintain valid licenses for
the Software, in which case termination is
immediate) and such default continues for thirty (30)
days following receipt of written notice from Data
Translation, Data Translation may, in addition to any
other remedies it may have, terminate the Support
Services.

6. CHARGES, TAXES AND PAYMENTS.

6.1 Payment. The Support Fee in respect of the
initial term, and, as adjusted pursuant to Section 5.2
in respect of additional terms, is payable in full prior
to the commencement of the initial term or any
additional term, as applicable.

6.2 Changes From Term to Term. The Support Fee
and the terms and conditions of this Support Policy
may be subject to change effective at the end of the
initial term or any additional term by giving Licensee
at least sixty (60) days prior written notice.

Data Translation Support Policy
6.3 Taxes. The charges specified in this Support
Policy are exclusive of taxes. Licensee will pay, or
reimburse Data Translation, for all taxes imposed on
Licensee or Data Translation arising out of this
Support Policy except for any income tax imposed on
Data Translation by a governmental entity. Such
charges shall be grossed-up for any withholding tax
imposed on Data Translation by a foreign
governmental entity.

6.4 Additional Charges. Licensee agrees that Data
Translation or its authorized distributor will have the
right to charge in accordance with Data Translation's
then-current policies for any services resulting from
(a) Licensee's modification of the Software, (b)
Licensee's failure to utilize the then-current release,
or the immediately previous Enhanced Release, of
the Software, (c) Licensee's failure to maintain Data
Translation Support Services throughout the term of
the Agreement, (d) problems, errors or inquiries
relating to computer hardware or software other than
the Software, or (e) problems, errors or inquiries
resulting from the misuse or damage or of the
Software or from the combination of the Software
with other programming or equipment to the extent
such combination has not been authorized by Data
Translation. Pursuant to Section 2.4 of the
Agreement, the Support Fee will also be adjusted in
accordance with Data Translation's then current fee
schedule as additional Licensed Processors are
added. Support Fees do not include travel and living
expenses or expenses for installation, training, file
conversion costs, optional products and services,
directories, shipping charges or the cost of any
recommended hardware, third party software, or third
party software maintenance fees or operating system
upgrade.

7. WARRANTY LIMITATION.

EXCEPT AS EXPRESSLY STATED IN THIS
SUPPORT POLICY, THERE ARE NO EXPRESS
OR IMPLIED WARRANTIES WITH RESPECT TO
THE SUPPORT SERVICES PROVIDED
HEREUNDER (INCLUDING THE FIXING OF
ERRORS THAT MAY BE CONTAINED IN THE
APPLICABLE DATA TRANSLATION
SOFTWARE), INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE WARRANTIES
AND REMEDIES SET FORTH IN THIS SUPPORT
POLICY ARE EXCLUSIVE, AND ARE IN LIEU
OF ALL OTHER WARRANTIES WHETHER
ORAL OR WRITTEN, EXPRESS OR IMPLIED.

8. GENERAL PROVISIONS.

Upon the election by Licensee to obtain Support
Services, the terms of this Support Policy shall be
governed by and are made a part of the Agreement.

	Title Page
	Copyright Page
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Conventions Used in this Manual
	Related Information
	Where to Get Help

	Introducing the DT Vision Foundry API
	What is the DT Vision Foundry API?
	What the API Is
	What the API Is Not

	Installation
	Service and Support
	Telephone Technical Support
	E-Mail and Fax Support
	World-Wide Web

	Using the DT Vision Foundry API
	Overview of the DT Vision Foundry API
	The DT Vision Foundry Base Class Object
	Name Methods
	Type Method

	Image Object
	Constructor and Destructor Methods
	Overlay Methods
	Thresholding Methods
	Image Allocation Methods
	Image Display Methods
	EZ Image Data Access Methods
	Fast Image Data Access Methods
	Output Look-Up Table Methods
	Instance Methods
	Point Conversion Methods
	List Method
	Calibration Methods
	24-Bit RGB Specialized Methods
	24-Bit HSL Specialized Methods
	Child Image Method

	ROI Objects
	Constructor and Destructor Methods
	Type Method
	Selection Methods
	Position Methods
	Mouse Methods
	ROI Creation
	ROI Selection and Deletion
	ROI Moving and Copying

	ROI Display Method
	ROI Image Access Methods
	Save and Restore Methods
	Graphic ROI Methods

	Curve Objects
	Constructor and Destructor Methods
	Style Methods
	Data Access Methods

	Graph Objects
	Constructor and Destructor Methods
	Curve List Method
	Save and Restore Methods
	Text Methods
	Show/Print Method
	Axis Methods
	Mouse Methods
	Direct Point Access Methods
	Grid Marking Methods
	Dialog Box Methods

	List Objects
	Constructor and Destructor Methods
	Retrieve Methods
	Insert Methods
	Delete Methods
	General Methods

	Calibration Objects
	Constructor and Destructor Methods
	Calibration Method
	Conversion Methods
	Save and Restore Methods
	General Methods

	Device Manager Objects
	Constructor and Destructor Methods
	Initialize and Uninitialze Methods
	Information Methods
	Save and Load Methods

	Using the Arithmetic Tool API
	Overview of the Arithmetic Tool API
	CcArithmetic Methods

	Using the AVI Player Tool API
	Overview of the AVI Player Tool API
	CcAVI Member Methods

	Using the Barcode Tool API
	Description of CcBarCode Methods
	Example Program Using the Barcode API

	Using the Blob Analysis Tool API
	Overview of the Blob Analysis Tool API
	CcBlobFinder Methods
	CcBlob Methods
	Example Program Using the Blob Analysis Tool API

	Using the Contour Classifier Tool API
	Introduction
	CcContour Methods

	Using the Custom Script Tool API
	Introduction
	Anatomy of a Typical Custom Script Program
	Data Types
	Operators
	Math Operators
	Logical Operators
	String Operators

	Programming Considerations
	Expressions
	Branching
	Looping
	Date and Time
	Trigonometric Functions

	Restrictions
	Keywords and Functions

	Using the Data Matrix Reader Tool API
	Overview of the Data Matrix Reader Tool API
	CcDMCode Methods
	CcDMReader Methods
	Example Program Using the Data Matrix Reader Tool API

	Using the Digital I/O Tool API
	Overview of the Digital I/O Tool API
	Description of CcDigIODevice Methods

	Using the Edge Finder Tool API
	Overview of the Edge Finder Tool API
	CcEdgeFinder Methods

	Using the File Manager Tool API
	Overview of the File Manager Tool API
	CcFileConv Methods
	Example Program Using the File Manager Tool API

	Using the Filter Tool API
	Overview of the Filter Tool API
	CcConvolution Methods
	Example Program Using the Filter Tool API

	Using the Gauge Tool API
	Overview of the Gauge Tool API
	CcRoiGauge Methods

	Using the Histogram Tool API
	Overview of the Histogram Tool API
	CcHistogram Methods
	Example Program Using the Histogram Tool API

	Using the Image Classifier Tool API
	Overview of the Image Classifier Tool API
	CcImgCL Methods

	Using the Image Modifier Tool API
	Overview of the Image Modifier Tool API
	CcImgMod Methods

	Using the Line Profile Tool API
	Overview of the Line Profile Tool API
	CcLineProfile Methods
	Example Program Using the Line Profile Tool API

	Using the Morphology Tool API
	Overview of the Morphology Tool API
	CcMorphology Methods
	Example Program Using the Morphology Tool API

	Using the Picture Tool API
	Overview of the Picture Tool API
	CcPictureTool Methods

	Using the Pixel Change Tool API
	Overview of the Pixel Change Tool API
	CcChange Methods
	Example Program Using the Pixel Change Tool API

	Using the Polar Unwrap Tool API
	Overview of the Polar Unwrap Tool API
	CcUnwrapper Methods
	Example Program Using the Polar UnwrapTool API

	Using the ROI Shape Fitter Tool API
	Overview of the ROI Shape Fitter Tool API
	CcShapeFitter Methods

	Using the Search Tool API
	Overview of the Search Tool API
	SearchTypeEnum Enumeration
	MatchRecord Type
	Class Method Summary

	CcSearch Methods

	Using the Serial I/O Tool API
	Overview of the Serial I/O Tool API
	CcSerialIO Methods
	Example Program Using the Serial I/O Tool API

	Using the Sound Tool API
	Overview of the Sound Tool API
	Example Program Using the Sound Tool API

	Using the Text Tool API
	Overview of the Text Tool API
	CcTextRoiRect Methods

	Using the Threshold Tool API
	Overview of the Threshold Tool API
	CcThreshold Methods
	Example Program Using the Threshold Tool API

	Creating DT Vision Foundry Tools
	Introduction
	What is a Tool?
	How a Tool Communicates with the Main Application
	Guidelines for Creating a Tool

	DT Vision Foundry Messages
	Request Messages
	Notification Messages
	Command Messages
	Point and Click Script Messages

	Example Tool Implementation
	Creating a Base Tool
	Registering a Tool with DT Vision Foundry
	Customizing the Look of Your Tool
	Editing the String Table in the RC File
	Editing the Bitmaps and Icon in the RC File
	Editing the Dialog Box in the RC File

	Adding Functionality Using Command and Request Messages
	Adding Functionality Using Notification Messages
	Separating the Tool into Modules

	Speeding Up the Execution of a Tool
	Deriving Algorithms with DT Vision Foundry
	Executing Algorithms with DT Vision Foundry

	Vendor-Specific Properties and Values
	Index
	Support Policy

